首页> 外文期刊>Neural computation >Employing the Z-Transform to Optimize the Calculation of the Synaptic Conductance of NMDA and Other Synaptic Channels in Network Simulations
【24h】

Employing the Z-Transform to Optimize the Calculation of the Synaptic Conductance of NMDA and Other Synaptic Channels in Network Simulations

机译:在网络仿真中使用Z变换优化NMDA和其他突触通道的突触电导的计算

获取原文
获取原文并翻译 | 示例

摘要

Calculation of the total conductance change induced by multiple synapses at a given membrane compartment remains one of the most time-consuming processes in biophysically realistic neural network simulations. Here we show that this calculation can be achieved in a highly efficient way even for multiply converging synapses with different delays by means of the Z-transform. Using the example of an NMDA synapse, we show that every update of the total conductance is achieved by an iterative process requiring at most three multiplications, which together need only the history values from the two most recent iterations. A major advantage is that this small computational load is independent of the number of synapses simulated. A benchmark comparison to other techniques demonstrates superior performance of the Z-transform. Nonvoltage-dependent synaptic channels can be treated similarly (Olshausen, 1990; Brettle & Niebur, 1994), and the technique can also be generalized to other synaptic channels.
机译:在给定的膜室中,由多个突触引起的总电导变化的计算仍然是生物物理上逼真的神经网络模拟中最耗时的过程之一。在这里,我们表明即使通过Z变换,即使具有不同延迟的多重会聚突触,也可以以高效的方式实现此计算。以NMDA突触为例,我们显示总电导的每次更新都是通过一个迭代过程实现的,该过程最多需要三个乘法,而这些乘法仅需要两个最近迭代的历史值即可。一个主要的优点是,这种小的计算量与模拟的突触数量无关。与其他技术的基准比较证明了Z变换的优越性能。非电压依赖性突触通道可以类似地处理(Olshausen,1990; Brettle&Niebur,1994),该技术也可以推广到其他突触通道。

著录项

  • 来源
    《Neural computation》 |1998年第7期|1639-1651|共13页
  • 作者

    Köhn J; Wörgötter F;

  • 作者单位

    Department of Neurophysiology, Ruhr-Universität, 44780 Bochum, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号