首页> 外文期刊>Learning & memory >A model of bidirectional synaptic plasticity: From signaling network to channel conductance
【24h】

A model of bidirectional synaptic plasticity: From signaling network to channel conductance

机译:双向突触可塑性模型:从信号网络到通道电导

获取原文
获取原文并翻译 | 示例

摘要

In many regions of the brain, including the mammalian cortex, the strength of synaptic transmission call be bidirectionally regulated by cortical activity (synaptic plasticity). One line of evidence indicates that long-term synaptic potentiation (LTP) and long-term synaptic depression (LTD), correlate with the phosphorylation/dephosphorylation of sites on the alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit protein GluR1. Bidirectional synaptic plasticity can be induced by different frequencies of presynaptic stimulation, but there is considerable evidence indicating that the key variable is calcium influx through postsynaptic N-methyl-D-aspartate (NMDA) receptors. Here, we present a biophysical model of bidirectional synaptic plasticity based on [Ca2+]-dependent phospho/dephosphorylation of the GluR1 subunit of the AMPA receptor. The primary assumption of the model, for which there is wide experimental support, is that the postsynaptic calcium concentration, and consequent activation of calcium-dependent protein kinases and phosphatases, is the trigger for phosphorylation/dephosphorylation at GluR1 and consequent induction of LTP/LTD. We explore several different mathematical approaches, all of them based on mass-action assumptions. First, we Use a first order approach, in which transition rates are functions of an activator, in this case calcium. Second, we adopt the Michaelis-Menten approach with different assumptions about the signal transduction cascades, ranging from abstract to more detailed and biologically plausible models. Despite the different assumptions made ill each model, ill each case, LTD is induced by a moderate increase in postsynaptic calcium and LTP is induced by high Ca2+ concentration.
机译:在大脑的许多区域,包括哺乳动物的皮质,突触传递的强度受到皮层活动(突触可塑性)的双向调节。一条证据表明,长期突触增强(LTP)和长期突触抑制(LTD)与α-氨基-3-羟基-5-羟基-5-甲基-4-异恶唑丙酸上位点的磷酸化/去磷酸化有关(AMPA)受体亚基蛋白GluR1。双向突触可塑性可以通过不同频率的突触前刺激来诱导,但是有大量证据表明关键变量是钙通过突触后N-甲基-D-天冬氨酸(NMDA)受体的流入。在这里,我们基于AMPA受体的GluR1亚基的[Ca2 +]依赖性磷酸/去磷酸化,提出双向突触可塑性的生物物理模型。该模型的主要假设得到了广泛的实验支持,即突触后的钙浓度以及随之而来的钙依赖性蛋白激酶和磷酸酶的激活是触发GluR1磷酸化/去磷酸化并随后诱导LTP / LTD的诱因。 。我们探索了几种不同的数学方法,所有这些方法均基于质量作用假设。首先,我们使用一阶方法,其中过渡速率是活化剂(在本例中为钙)的功能。其次,我们采用Michaelis-Menten方法,对信号转导级联有不同的假设,范围从抽象到更详细且生物学上合理的模型。尽管每种模型的假设不同,但在每种情况下,LTD都是由突触后钙的适度增加诱导的,而LTP是由高Ca2 +浓度诱导的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号