首页> 外文期刊>Neural computation >Minimizing Binding Errors using Learned Conjunctive Features
【24h】

Minimizing Binding Errors using Learned Conjunctive Features

机译:使用学习的联合功能最大程度地减少绑定错误

获取原文
获取原文并翻译 | 示例

摘要

We have studied some of the design trade-offs governing visual represen- tations based on spatially invariant conjunctive feature detectors, with an emphasis on the susceptibility of such systems to false-positive recogni- tion errors-Malsburg's classical binding problem. We begin by deriving an analytical model that makes explicit how recognition performance is affected by the number of objects that must be distinguished. The number of features included in the representation, the complexity of individual objects, and the clutter load, that is, the amount of visual material in the field of view in which multiple objects must be simultaneously recog- nized, independent o pose, and without explicit segmentation.
机译:我们已经研究了一些基于空间不变的联合特征检测器的视觉表示设计权衡方法,重点是这类系统对假阳性识别错误的敏感性(马尔斯堡经典的绑定问题)。我们首先得出一个分析模型,该模型明确表明识别性能如何受到必须区分的对象数量的影响。表示中包含的特征数量,单个对象的复杂性以及杂乱的负载,即必须同时识别多个对象,独立姿态且没有明确的细分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号