首页> 外文期刊>Neural computation >Coding of temporally varying signals in networks of spiking neurons with global delayed feedback
【24h】

Coding of temporally varying signals in networks of spiking neurons with global delayed feedback

机译:全局延迟反馈的尖峰神经元网络中时变信号的编码

获取原文
获取原文并翻译 | 示例

摘要

Oscillatory and synchronized neural activities are commonly found in the brain, and evidence suggests that many of them are caused by global feedback. Their mechanisms and roles in information processing have been discussed often using purely feedforward networks or recurrent networks with constant inputs. On the other hand, real recurrent neural networks are abundant and continually receive information-rich inputs from the outside environment or other parts of the brain. We examine how feedforward networks of spiking neurons with delayed global feedback process information about temporally changing inputs. We show that the network behavior is more synchronous as well as more correlated with and phase-locked to the stimulus when the stimulus frequency is resonant with the inherent frequency of the neuron or that of the network oscillation generated by the feedback architecture. The two eigenmodes have distinct dynamical characteristics, which are supported by numerical simulations and by analytical arguments based on frequency response and bifurcation theory. This distinction is similar to the class I versus class 11 classification of single neurons according to the bifurcation from quiescence to periodic firing, and the two modes depend differently on system parameters. These two mechanisms may be associated with different types of information processing.
机译:振荡和同步神经活动通常在大脑中发现,证据表明,其中许多活动是由全局反馈引起的。经常使用纯前馈网络或具有恒定输入的递归网络来讨论它们在信息处理中的机制和作用。另一方面,真实的递归神经网络非常丰富,并且不断从外部环境或大脑其他部位接收信息丰富的输入。我们研究了具有延迟全局反馈的尖峰神经元前馈网络如何处理有关随时间变化的输入的信息。我们显示,当刺激频率与神经元的固有频率或由反馈体系结构产生的网络振荡的共振频率共振时,网络行为更同步,与刺激更加相关并锁相。两种本征模式具有独特的动力学特性,这些特性得到了数值模拟和基于频率响应和分叉理论的分析论证的支持。根据从静止到定期触发的分叉,这种区别类似于对单个神经元的I类与11类分类。两种模式分别取决于系统参数。这两种机制可以与不同类型的信息处理相关联。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号