首页> 外文期刊>Neural computation >Optimal Spike-Timing-Dependent Plasticity for Precise Action Potential Firing in Supervised Learning
【24h】

Optimal Spike-Timing-Dependent Plasticity for Precise Action Potential Firing in Supervised Learning

机译:在监督学习中精确动作电位触发的最佳时标时序可塑性

获取原文
获取原文并翻译 | 示例

摘要

In timing-based neural codes, neurons have to emit action potentials at precise moments in time. We use a supervised learning paradigm to derive a synaptic update rule that optimizes by gradient ascent the likelihood of postsynaptic firing at one or several desired firing times. We find that the optimal strategy of up- and downregulating synaptic efficacies depends on the relative timing between presynaptic spike arrival and desired postsynaptic firing. If the presynaptic spike arrives before the desired postsynaptic spike timing, our optimal learning rule predicts that the synapse should become potentiated. The dependence of the potentiation on spike timing directly reflects the time course of an excitatory postsynaptic potential. However, our approach gives no unique reason for synaptic depression under reversed spike timing. In fact, the presence and amplitude of depression of synaptic efficacies for reversed spike timing depend on how constraints are implemented in the optimization problem. Two different constraints, control of postsynaptic rates and control of temporal locality, are studied. The relation of our results to spike-timing-dependent plasticity and reinforcement learning is discussed.
机译:在基于时序的神经代码中,神经元必须在精确的时间点发出动作电位。我们使用监督学习范式来导出突触更新规则,该规则通过梯度上升来优化在一个或多个所需触发时间的突触后触发的可能性。我们发现,上调和下调突触效率的最佳策略取决于突触前突波到达与所需的突触后激发之间的相对时间。如果突触前突波在所需的突触后突波时机之前到达,则我们的最佳学习规则将预测突触应增强。增强作用对尖峰时间的依赖性直接反映了兴奋性突触后电位的时间过程。然而,我们的方法并没有给出独特的原因在相反的尖峰时间下突触抑制。实际上,用于反向尖峰定时的突触效率降低的存在和幅度取决于优化问题中约束的实现方式。研究了两个不同的约束条件,即突触后速率的控制和颞位的控制。讨论了我们的结果与峰值定时依赖的可塑性和强化学习之间的关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号