首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Supervised Learning Using Spike-Timing-Dependent Plasticity of Memristive Synapses
【24h】

Supervised Learning Using Spike-Timing-Dependent Plasticity of Memristive Synapses

机译:使用忆阻突触的时标时序可塑性进行监督学习

获取原文
获取原文并翻译 | 示例

摘要

We propose a supervised learning model that enables error backpropagation for spiking neural network hardware. The method is modeled by modifying an existing model to suit the hardware implementation. An example of a network circuit for the model is also presented. In this circuit, a three-terminal ferroelectric memristor (3T-FeMEM), which is a field-effect transistor with a gate insulator composed of ferroelectric materials, is used as an electric synapse device to store the analog synaptic weight. Our model can be implemented by reflecting the network error to the write voltage of the 3T-FeMEMs and introducing a spike-timing-dependent learning function to the device. An XOR problem was successfully demonstrated as a benchmark learning by numerical simulations using the circuit properties to estimate the learning performance. In principle, the learning time per step of this supervised learning model and the circuit is independent of the number of neurons in each layer, promising a high-speed and low-power calculation in large-scale neural networks.
机译:我们提出了一种监督学习模型,该模型可实现错误反向传播,以增强神经网络硬件的性能。通过修改现有模型以适合硬件实现来对方法进行建模。还提供了该模型的网络电路示例。在该电路中,三端铁电忆阻器(3T-FeMEM)是一种电效应组件,用于存储模拟突触权重,该三端铁电忆阻器是具有由铁电材料构成的栅极绝缘体的场效应晶体管。我们的模型可以通过将网络错误反映到3T-FeMEM的写入电压并向设备引入与尖峰时序相关的学习功能来实现。通过使用电路属性估计学习性能的数值模拟,成功地将XOR问题证明为基准学习。原则上,这种有监督的学习模型和电路的每步学习时间与每一层中神经元的数量无关,从而有望在大规模神经网络中进行高速和低功耗的计算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号