首页> 外文期刊>Neural computation >Connection Topology Selection in Central Pattern Generators by Maximizing the Gain of Information
【24h】

Connection Topology Selection in Central Pattern Generators by Maximizing the Gain of Information

机译:通过最大化信息增益来选择中央模式生成器中的连接拓扑

获取原文
获取原文并翻译 | 示例

摘要

A study of a general central pattern generator (CPG) is carried out by means of a measure of the gain of information between the number of available topology configurations and the output rhythmic activity. The neurons of the CPG are chaotic Hindmarsh-Rose models that cooperate dynamically to generate either chaotic or regular spatiotemporal patterns. These model neurons are implemented by computer simulations and electronic circuits. Out of a random pool of input configurations, a small subset of them maximizes the gain of information. Two important characteristics of this subset are emphasized: (1) the most regular output activities are chosen, and (2) none of the selected input configurations are networks with open topology. These two principles are observed in living CPGs as well as in model CPGs that are the most efficient in controlling mechanical tasks, and they are evidence that the information-theoretical analysis can be an invaluable tool in searching for general properties of CPGs.
机译:通用中央模式发生器(CPG)的研究是通过测量可用拓扑结构数量和输出节奏活动之间的信息增益来进行的。 CPG的神经元是混沌的Hindmarsh-Rose模型,可以动态协作以生成混沌或规则的时空模式。这些模型神经元通过计算机仿真和电子电路实现。在输入配置的随机池中,其中的一小部分子集可以最大程度地提高信息的获取率。强调了此子集的两个重要特征:(1)选择最常规的输出活动,并且(2)所选输入配置都不是具有开放拓扑的网络。这两个原理在活动的CPG以及在控制机械任务中最有效的模型CPG中都得到了观察,它们证明了信息理论分析可以成为寻找CPG常规属性的宝贵工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号