首页> 外文期刊>Neural computation >Combining Feature- and Correspondence-Based Methods for Visual Object Recognition
【24h】

Combining Feature- and Correspondence-Based Methods for Visual Object Recognition

机译:结合基于特征和对应关系的视觉对象识别方法

获取原文
获取原文并翻译 | 示例

摘要

We present an object recognition system built on a combination of feature- and correspondence-based pattern recognizers. The feature-based part, called preselection netivork, is a single-layer feedforward network weighted with the amount of information contributed by each feature to the decision at hand. For processing arbitrary objects, we employ small, regular graphs whose nodes are attributed with Gabor amplitudes, termed parquet graphs. The preselection network can quickly rule out most irrelevant matches and leaves only the ambiguous cases, so-called model candidates, to be verified by a rudimentary version of elastic graph matching, a standard correspondence-based technique for face and object recognition. According to the model, graphs are constructed that describe the object in the input image well. We report the results of experiments on standard databases for object recognition. The method achieved high recognition rates on identity and pose. Unlike many other models, it can also cope with varying background, multiple objects, and partial occlusion.
机译:我们提出了一种基于特征和基于对应的模式识别器组合的对象识别系统。基于功能的部分称为预选网络,是一个单层前馈网络,加权后的权重由每个功能对当前决策提供的信息量加权。为了处理任意对象,我们使用小的规则图,这些图的节点具有Gabor振幅,称为镶木地板图。预选网络可以快速排除大多数不相关的匹配项,仅保留模棱两可的情况(所谓的模型候选),即可通过基本版本的弹性图匹配进行验证,这是一种基于标准对应关系的人脸和物体识别技术。根据该模型,可以构建图形来很好地描述输入图像中的对象。我们报告用于对象识别的标准数据库上的实验结果。该方法在身份和姿势上获得了很高的识别率。与许多其他模型不同,它还可以应对变化的背景,多个对象和部分遮挡。

著录项

  • 来源
    《Neural computation》 |2009年第7期|1952-1989|共38页
  • 作者单位

    Mobile Vision Systems, Bluecherstrasse 19, D-46397 Bocholt, Germany;

    Institut fuer Neuroinformatik, Ruhr-Universitaet Bochum, D-44780 Bochum, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号