首页> 外文期刊>Neural computation >Nonlinear Extraction of Independent Components of Natural Images Using Radial Gaussianization
【24h】

Nonlinear Extraction of Independent Components of Natural Images Using Radial Gaussianization

机译:径向高斯化非线性提取自然图像独立分量

获取原文
获取原文并翻译 | 示例

摘要

We consider the problem of efficiently encoding a signal by transforming it to a new representation whose components are statistically independent. A widely studied linear solution, known as independent component analysis (ICA), exists for the case when the signal is generated as a linear transformation of independent nongaussian sources. Here, we examine a complementary case, in which the source is nongaussian and elliptically symmetric. In this case, no invertible linear transform suffices to decompose the signal into independent components, but we show that a simple nonlinear transformation, which we call radial gaussianization (RG), is able to remove all dependencies. We then examine this methodology in the context of natural image statistics. We first show that distributions of spatially proximal bandpass filter responses are better described as elliptical than as linearly transformed independent sources. Consistent with this, we demonstrate that the reduction in dependency achieved by applying RG to either nearby pairs or blocks of bandpass filter responses is significantly greater than that achieved by ICA. Finally, we show that the RG transformation may be closely approximated by divisive normalization, which has been used to model the nonlinear response properties of visual neurons.
机译:我们考虑通过将信号转换为成分在统计上独立的新表示形式来有效编码信号的问题。当信号作为独立的非高斯源的线性变换生成时,存在一种被广泛研究的线性解决方案,称为独立分量分析(ICA)。在这里,我们研究了一个互补情况,其中源是非高斯的并且是椭圆对称的。在这种情况下,没有可逆的线性变换足以将信号分解为独立的分量,但是我们证明了简单的非线性变换(我们称为径向高斯化(RG))能够消除所有依赖关系。然后,我们在自然图像统计数据的背景下检查此方法。我们首先表明,空间近端带通滤波器响应的分布更好地描述为椭圆形,而不是线性变换的独立源。与此相一致,我们证明了通过将RG应用于附近对或带通滤波器响应块所实现的相依性降低明显大于ICA。最后,我们表明,RG变换可以通过除数归一化来近似,该除数归一化已用于建模视觉神经元的非线性响应特性。

著录项

  • 来源
    《Neural computation》 |2009年第6期|1485-1519|共35页
  • 作者

    Siwei Lyu; Eero P. Simoncelli;

  • 作者单位

    Computer Science Department, University at Albany, State University of New York, Albany, NY 22222, U.S.A.;

    Howard Hughes Medical Institute, Center for Neural Science, and Courant Institute for Mathematical Sciences, New York University, Nezv York, NY 10003, U.S.A;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号