首页> 外文期刊>Neural computation >A Moving Bump in a Continuous Manifold: A Comprehensive Study of the Tracking Dynamics of Continuous Attractor Neural Networks
【24h】

A Moving Bump in a Continuous Manifold: A Comprehensive Study of the Tracking Dynamics of Continuous Attractor Neural Networks

机译:连续流形中的运动颠簸:连续吸引子神经网络跟踪动力学的综合研究

获取原文
获取原文并翻译 | 示例

摘要

Understanding how the dynamics of a neural network is shaped by the network structure and, consequently, how the network structure facilitates the functions implemented by the neural system is at the core of using mathematical models to elucidate brain functions. This study investigates the tracking dynamics of continuous attractor neural networks (CANNs). Due to the translational in variance of neuronal recurrent interactions, CANNs can hold a continuous family of stationary states. They form a continuous manifold in which the neural system is neutrally stable. We systematically explore how this property facilitates the tracking performance of a CANN, which is believed to have clear correspondence with brain functions. By using the wave functions of the quantum harmonic oscillator as the basis, we demonstrate how the dynamics of a CANN is decomposed into different motion modes, corresponding to distortions in the amplitude, position, width, or skewness of the network state. We then develop a perturbation approach that utilizes the dominating movement of the network's stationary states in the state space. This method allows us to approximate the network dynamics up to an arbitrary accuracy depending on the order of perturbation used. We quantify the distortions of a gaussian bump during tracking and study their effects on tracking performance. Results are obtained on the maximum speed for a moving stimulus to be trackable and the reaction time for the network to catch up with an abrupt change in the stimulus.
机译:了解神经网络的动力学是如何由网络结构形成的,因此,网络结构如何促进神经系统实现的功能是使用数学模型阐明大脑功能的核心。这项研究调查了连续吸引神经网络(CANNs)的跟踪动力学。由于神经元递归相互作用的翻译差异,CANN可以保持连续的静止状态家族。它们形成一个连续的流形,其中神经系统是中性稳定的。我们系统地探索了此属性如何促进CANN的跟踪性能,该CANN被认为与大脑功能具有明显的对应关系。通过使用量子谐波振荡器的波函数作为基础,我们演示了如何将CANN的动力学分解为不同的运动模式,从而对应于网络状态的幅度,位置,宽度或偏度的畸变。然后,我们开发一种摄动方法,该方法利用状态空间中网络静态状态的主导运动。这种方法使我们可以根据所用扰动的顺序将网络动态近似到任意精度。我们在跟踪过程中量化高斯凹凸的失真,并研究它们对跟踪性能的影响。获得的结果是可跟踪的移动刺激的最大速度以及网络赶上刺激突然变化的反应时间。

著录项

  • 来源
    《Neural computation》 |2010年第3期|752-792|共41页
  • 作者单位

    Department of Physics, Hong Kong University of Science and Technology,Clear Water Bay, Hong Kong, China;

    Department of Physics, Hong Kong University of Science and Technology,Clear Water Bay, Hong Kong, China;

    Department of Informatics, University of Sussex, Brighton BN1 9QH, U.K. Lab of Neural Information Processing, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号