首页> 外文期刊>Neural computation >Revisiting Tests for Neglected Nonlinearity Using Artificial Neural Networks
【24h】

Revisiting Tests for Neglected Nonlinearity Using Artificial Neural Networks

机译:使用人工神经网络的被忽视非线性的再检验

获取原文

摘要

Tests for regression neglected nonlinearity based on artificial neural net works (ANNs) have so far been studied by separately analyzing the two ways in which the null of regression linearity can hold. This implies that the asymptotic behavior of general ANN-based tests for neglected nonlinearity is still an open question. Here we analyze a convenient ANN-based quasi-likelihood ratio statistic for testing neglected nonlin earity, paying careful attention to both components of the null. We derive the asymptotic null distribution under each component separately and analyze their interaction. Somewhat remarkably, it turns out that the previously known asymptotic null distribution for the type 1 case still applies, but under somewhat stronger conditions than previously recog nized. We present Monte Carlo experiments corroborating our theoretical results and showing that standard methods can yield misleading infer ence when our new, stronger regularity conditions are violated.
机译:到目前为止,通过分别分析回归线性的零值可以成立的两种方法,已经研究了基于人工神经网络(ANN)的回归被忽略的非线性测试。这意味着对于基于非线性的一般基于ANN的测试,其渐近行为仍然是一个悬而未决的问题。在这里,我们分析了一个方便的基于ANN的准似然比统计量,用于测试被忽略的非线性时态,同时要特别注意零值的两个组成部分。我们分别推导每个分量下的渐近零分布并分析它们的相互作用。令人惊讶的是,事实证明,对于类型1的情况,以前已知的渐近零分布仍然适用,但是在比以前认识到的条件强的条件下。我们提出的蒙特卡洛实验证实了我们的理论结果,并表明当违反我们的新的更强的规律性条件时,标准方法可能会产生误导性的推断。

著录项

  • 来源
    《Neural computation》 |2011年第5期|p.1133-1186|共54页
  • 作者单位

    School of Economics, Yonsei University, Seoul 120-749, Korea;

    CSFI, Osaka University, Osaka 560-8531, Japan;

    Department of Economics, University of California, San Diego,La Jolla 92093-0508, U.S.A.;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号