首页> 外文期刊>Neural computation >Alternating Direction Methods for Latent Variable Gaussian Graphical Model Selection
【24h】

Alternating Direction Methods for Latent Variable Gaussian Graphical Model Selection

机译:潜在变量高斯图形模型选择的交替方向方法

获取原文
获取原文并翻译 | 示例

摘要

Chandrasekaran, Parrilo, and Willsky (2012) proposed a convex optimization problem for graphical model selection in the presence of unobserved variables. This convex optimization problem aims to estimate an inverse covariance matrix that can be decomposed into a sparse matrix minus a low-rank matrix from sample data. Solving this convex optimization problem is very challenging, especially for large problems. In this letter, we propose two alternating direction methods for solving this problem. The first method is to apply the classic alternating direction method of multipliers to solve the problem as a consensus problem. The second method is a proximal gradient-based alternating-direction method of multipliers. Our methods take advantage of the special structure of the problem and thus can solve large problems very efficiently. A global convergence result is established for the proposed methods. Numerical results on both synthetic data and gene expression data show that our methods usually solve problems with 1 million variables in 1 to 2 minutes and are usually 5 to 35 times faster than a state-of-the-art Newton-CG proximal point algorithm.
机译:Chandrasekaran,Parrilo和Willsky(2012)在存在未观测变量的情况下为图形模型选择提出了一个凸优化问题。这个凸优化问题旨在估计一个逆协方差矩阵,该逆协方差矩阵可以从样本数据分解为稀疏矩阵减去低秩矩阵。解决这个凸优化问题非常具有挑战性,特别是对于大问题。在这封信中,我们提出了两种交替的方向方法来解决此问题。第一种方法是应用乘数的经典交变方向法将问题解决为共识问题。第二种方法是基于近端梯度的乘法器交替方向方法。我们的方法利用问题的特殊结构,因此可以非常有效地解决大型问题。针对所提出的方法建立了全局收敛结果。合成数据和基因表达数据的数值结果表明,我们的方法通常在1-2分钟内解决一百万个变量的问题,通常比最新的Newton-CG近端算法快5至35倍。

著录项

  • 来源
    《Neural computation》 |2013年第8期|2172-2198|共27页
  • 作者单位

    Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong;

    Department of Operations Research and Financial Engineering, Princeton University, Princeton, NJ 08536, U.S.A.;

    School of Statistics, University of Minnesota, Minneapolis, MN 55455, U.S.A.;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号