首页> 外文期刊>Neural computation >Combinatorial Neural Codes from a Mathematical Coding Theory Perspective
【24h】

Combinatorial Neural Codes from a Mathematical Coding Theory Perspective

机译:数学编码理论角度的组合神经代码

获取原文
获取原文并翻译 | 示例

摘要

Shannon's seminal 1948 work gave rise to two distinct areas of research: information theory and mathematical coding theory. While information theory has had a strong influence on theoretical neuroscience, ideas from mathematical coding theory have received considerably less attention. Here we take a new look at combinatorial neural codes from a mathematical coding theory perspective, examining the error correction capabilities of familiar receptive field codes (RF codes). We find, perhaps surprisingly, that the high levels of redundancy present in these codes do not support accurate error correction, although the error-correcting performance of receptive field codes catches up to that of random comparison codes when a small tolerance to error is introduced. However, receptive field codes are good at reflecting distances between represented stimuli, while the random comparison codes are not. We suggest that a compromise in error-correcting capability may be a necessary price to pay for a neural code whose structure serves not only error correction, but must also reflect relationships between stimuli.
机译:香农1948年的开创性工作引起了两个不同的研究领域:信息论和数学编码论。尽管信息论对神经科学理论产生了很大的影响,但数学编码理论的思想却很少受到关注。在这里,我们从数学编码理论的角度重新审视组合神经代码,研究了熟悉的接收域代码(RF代码)的纠错能力。我们可能会惊讶地发现,尽管在引入较小的容错能力时,接收域代码的纠错性能要赶上随机比较代码的纠错性能,但是这些代码中存在的高冗余度却不支持精确的纠错。但是,接收场代码擅长反映所表示的刺激之间的距离,而随机比较代码则不然。我们建议,错误校正能力的折衷可能是购买神经代码的必要代价,该神经代码的结构不仅可以进行错误校正,而且还必须反映刺激之间的关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号