首页> 外文期刊>Neural computation >Dynamical Movement Primitives: Learning Attractor Models for Motor Behaviors
【24h】

Dynamical Movement Primitives: Learning Attractor Models for Motor Behaviors

机译:动态运动原语:学习运动行为吸引模型

获取原文
获取原文并翻译 | 示例

摘要

Nonlinear dynamical systems have been used in many disciplines to model complex behaviors, including biological motor control, robotics, perception, economics, traffic prediction, and neuroscience. While often the unexpected emergent behavior of nonlinear systems is the focus of investigations, it is of equal importance to create goal-directed behavior (e.g., stable locomotion from a system of coupled oscillators under perceptual guidance). Modeling goal-directed behavior with nonlinear systems is, however, rather difficult due to the parameter sensitivity of these systems, their complex phase transitions in response to subtle parameter changes, and the difficulty of analyzing and predicting their long-term behavior; intuition and time-consuming parameter tuning play a major role. This letter presents and reviews dynamical movement primitives, a line of research for modeling attractor behaviors of autonomous nonlinear dynamical systems with the help of statistical learning techniques. The essence of our approach is to start with a simple dynamical system, such as a set of linear differential equations, and transform those into a weakly nonlinear system with prescribed attractor dynamics by means of a learnable autonomous forcing term. Both point attractors and limit cycle attractors of almost arbitrary complexity can be generated. We explain the design principle of our approach and evaluate its properties in several example applications in motor control and robotics.
机译:非线性动力学系统已在许多学科中用于模拟复杂行为,包括生物运动控制,机器人技术,感知,经济学,交通预测和神经科学。虽然非线性系统的意外突发行为通常是研究的重点,但创建目标导向行为(例如,在感知指导下来自耦合振荡器系统的稳定运动)也同样重要。但是,由于非线性系统的参数敏感性,响应细微参数变化的复杂相变以及分析和预测其长期行为的难度,因此使用非线性系统对目标导向的行为进行建模非常困难。直观和耗时的参数调整起着主要作用。这封信介绍并评论了动力学运动原语,这是一条借助统计学习技术对自治非线性动力学系统的吸引子行为进行建模的研究线。我们方法的本质是从一个简单的动力学系统开始,例如一组线性微分方程,然后通过可学习的自主强迫项将它们转换为具有规定吸引子动力学的弱非线性系统。可以生成几乎任意复杂度的点吸引子和极限环吸引子。我们将说明我们的方法的设计原理,并在电动机控制和机器人技术的几个示例应用中评估其性能。

著录项

  • 来源
    《Neural computation》 |2013年第2期|328-373|共46页
  • 作者单位

    Ecole Polytechnique Federale de Lausanne, Lausanne CH-1015, Switzerland;

    School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, U.K;

    Computer Science, Neuroscience, and Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, U.S.A;

    Computer Science, Neuroscience, and Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, U.S.A. Max-Planck-Institute for Intelligent Systems, Tubingen 72076, Germany and ATR Computational Neuroscience Laboratories, Kyoto 619-0288, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号