首页> 外文期刊>Neural computation >Learning Rates of l~q Coefficient Regularization Learning with Gaussian Kernel
【24h】

Learning Rates of l~q Coefficient Regularization Learning with Gaussian Kernel

机译:高斯核对l〜q系数正则化学习的学习率

获取原文
获取原文并翻译 | 示例

摘要

Regularization is a well-recognized powerful strategy to improve the performance of a learning machine and l~q regularization schemes with 0 < q < ∞ are central in use. It is known that different q leads to different properties of the deduced estimators, say, l~2 regularization leads to a smooth estimator, while l~1 regularization leads to a sparse estimator. Then how the generalization capability of l~q regularization learning varies with q is worthy of investigation. In this letter, we study this problem in the framework of statistical learning theory. Our main results show that implementing l~q coefficient regularization schemes in the sample-dependent hypothesis space associated with a gaussian kernel can attain the same almost optimal learning rates for all 0 < q < ∞. That is, the upper and lower bounds of learning rates for l~q regularization learning are asymptotically identical for all 0 < q < ∞. Our finding tentatively reveals that in some modeling contexts, the choice of q might not have a strong impact on the generalization capability. From this perspective, q can be arbitrarily specified, or specified merely by other nongeneraliza-tion criteria like smoothness, computational complexity or sparsity.
机译:正则化是一种公认​​的有效策略,可以提高学习机的性能,并且使用0≤q <∞的l〜q正则化方案是中心。众所周知,不同的q会导致推导估计量的不同属性,例如,l〜2正则化导致平滑估计,而l〜1正则化导致稀疏估计。那么,l〜q正则化学习的泛化能力如何随q的变化而变化。在这封信中,我们将在统计学习理论的框架内研究这个问题。我们的主要结果表明,在与高斯核相关的样本相关假设空间中实施l〜q系数正则化方案,对于所有0 <q <∞,都可以获得几乎相同的最佳学习率。也就是说,对于所有0 <q <∞,l〜q正则化学习的学习率的上下界在渐近上是相同的。我们的发现初步揭示,在某些建模环境中,q的选择可能不会对泛化能力产生重大影响。从这个角度来看,q可以任意指定,也可以仅由其他非一般化标准(例如平滑度,计算复杂度或稀疏度)指定。

著录项

  • 来源
    《Neural computation》 |2014年第10期|2350-2378|共29页
  • 作者单位

    Institute for Information and System Sciences, School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, P.R.C.;

    Institute for Information and System Sciences, School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, P.R.C., and Beijing Center for Mathematics and Information Interdisciplinary Sciences, Beijing, 100038, P.R.C.;

    Institute for Information and System Sciences, School of Mathematics and Statistics, Xi'an jiaotong University, Xi'an, 710049, P.R.C.;

    Institute for Information and System Sciences, School of Mathematics and Statistics, Xi'an jiaotong University, Xi'an, 710049, P.R.C.;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号