首页> 美国卫生研究院文献>Journal of Translational Medicine >MKRMDA: multiple kernel learning-based Kronecker regularized least squares for MiRNA–disease association prediction
【2h】

MKRMDA: multiple kernel learning-based Kronecker regularized least squares for MiRNA–disease association prediction

机译:MKRMDA:基于多核学习的Kronecker正则化最小二乘用于MiRNA-疾病关联预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

BackgroundRecently, as the research of microRNA (miRNA) continues, there are plenty of experimental evidences indicating that miRNA could be associated with various human complex diseases development and progression. Hence, it is necessary and urgent to pay more attentions to the relevant study of predicting diseases associated miRNAs, which may be helpful for effective prevention, diagnosis and treatment of human diseases. Especially, constructing computational methods to predict potential miRNA–disease associations is worthy of more studies because of the feasibility and effectivity.
机译:背景技术最近,随着对microRNA(miRNA)的研究不断发展,大量的实验证据表明miRNA可能与多种人类复杂疾病的发生和发展有关。因此,有必要和紧迫地关注与疾病相关的miRNA预测的相关研究,这可能有助于有效预防,诊断和治疗人类疾病。特别是,由于可行性和有效性,构建预测潜在的miRNA-疾病关联的计算方法值得更多的研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号