首页> 外文期刊>Neural computation >On Nonnegative Matrix Factorization Algorithms for Signal-Dependent Noise with Application to Electromyography Data
【24h】

On Nonnegative Matrix Factorization Algorithms for Signal-Dependent Noise with Application to Electromyography Data

机译:信号相关噪声的非负矩阵分解算法及其在肌电数据中的应用

获取原文
获取原文并翻译 | 示例

摘要

Nonnegative matrix factorization (NMF) by the multiplicative updates algorithm is a powerful machine learning method for decomposing a high-dimensional nonnegative matrix V into two nonnegative matrices, Wand H, where V ~ WH. It has been successfully applied in the analysis and interpretation of large-scale data arising in neuroscience, computational biology, and natural language processing, among other areas. A distinctive feature of NMF is its nonnegativity constraints that allow only additive linear combinations of the data, thus enabling it to learn parts that have distinct physical representations in reality. In this letter, we describe an information-theoretic approach to NMF for signal-dependent noise based on the generalized inverse gaussian model. Specifically, we propose three novel algorithms in this setting, each based on multiplicative updates, and prove monotonicity of updates using the EM algorithm. In addition, we develop algorithm-specific measures to evaluate their goodness of fit on data. Our methods are demonstrated using experimental data from electromyography studies, as well as simulated data in the extraction of muscle synergies, and compared with existing algorithms for signal-dependent noise.
机译:乘性更新算法的非负矩阵分解(NMF)是一种强大的机器学习方法,用于将高维非负矩阵V分解为两个非负矩阵W和H,其中V〜WH。它已成功应用于神经科学,计算生物学和自然语言处理等领域的大规模数据的分析和解释。 NMF的一个显着特征是其非负约束,它仅允许数据的加法线性组合,从而使它能够学习现实中具有不同物理表示形式的零件。在这封信中,我们描述了一种基于广义逆高斯模型的NMF信息理论方法,用于信号相关的噪声。具体来说,我们在这种情况下提出了三种新颖的算法,每种算法都基于乘法更新,并使用EM算法证明了更新的单调性。此外,我们开发了特定于算法的方法来评估它们在数据上的拟合优度。我们的方法通过肌电图研究的实验数据以及提取的肌肉协同作用中的模拟数据得到了证明,并与现有的信号依赖性噪声算法进行了比较。

著录项

  • 来源
    《Neural computation》 |2014年第6期|1128-1168|共41页
  • 作者单位

    Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA 19111, U.S.A.;

    Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, U.S.A.;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号