首页> 外文期刊>Neural Networks, IEEE Transactions on >Symmetric Nonnegative Matrix Factorization: Algorithms and Applications to Probabilistic Clustering
【24h】

Symmetric Nonnegative Matrix Factorization: Algorithms and Applications to Probabilistic Clustering

机译:对称非负矩阵分解:算法和在概率聚类中的应用

获取原文
获取原文并翻译 | 示例

摘要

Nonnegative matrix factorization (NMF) is an unsupervised learning method useful in various applications including image processing and semantic analysis of documents. This paper focuses on symmetric NMF (SNMF), which is a special case of NMF decomposition. Three parallel multiplicative update algorithms using level 3 basic linear algebra subprograms directly are developed for this problem. First, by minimizing the Euclidean distance, a multiplicative update algorithm is proposed, and its convergence under mild conditions is proved. Based on it, we further propose another two fast parallel methods: $alpha$-SNMF and $beta$ -SNMF algorithms. All of them are easy to implement. These algorithms are applied to probabilistic clustering. We demonstrate their effectiveness for facial image clustering, document categorization, and pattern clustering in gene expression.
机译:非负矩阵分解(NMF)是一种无监督的学习方法,可用于各种应用程序,包括图像处理和文档的语义分析。本文重点介绍对称NMF(SNMF),这是NMF分解的特例。针对此问题,直接开发了使用3级基本线性代数子程序的三种并行乘法更新算法。首先,通过最小化欧几里得距离,提出了一种乘法更新算法,并证明了其在温和条件下的收敛性。在此基础上,我们进一步提出了另外两种快速并行方法:$ alpha $ -SNMF和$ beta $ -SNMF算法。它们都很容易实现。这些算法被应用于概率聚类。我们证明了它们对面部图像聚类,文档分类和基因表达中模式聚类的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号