首页> 中文期刊> 《计算机科学与探索》 >层次非负矩阵分解及在文本聚类中的应用

层次非负矩阵分解及在文本聚类中的应用

     

摘要

文本聚类的目标是把数据集中内容相似的文档归为一类,而使内容不同的文档分开。目前针对不同领域的需求,多种解决聚类问题的算法应运而生。然而,由于文本数据本身固有的复杂特点,如海量、高维、稀疏等,使得对海量文本数据的聚类仍然是一个棘手的问题。提出了层次非负矩阵分解聚类方法,该方法不但保留了非负矩阵分解的优点,如同步识别文档类别和找出类别本质特征,而且能够展现类别间的层次结构。这种类别层次结构在网页预览等应用中是非常有用的。在真实数据集20Newsgroups和Reuters-RCV1上的实验结果表明,层次非负矩阵分解相比已有的方法更有效。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号