首页> 外文期刊>Neural computation >Functional Identification of Spike-Processing Neural Circuits
【24h】

Functional Identification of Spike-Processing Neural Circuits

机译:尖峰处理神经回路的功能识别

获取原文
获取原文并翻译 | 示例

摘要

We introduce a novel approach for a complete functional identification of biophysical spike-processing neural circuits. The circuits considered accept multidimensional spike trains as their input and comprise a multitude of temporal receptive fields and conductance-based models of action potential generation. Each temporal receptive field describes the spatiotemporal contribution of all synapses between any two neurons and incorporates the (passive) processing carried out by the dendritic tree. The aggregate dendritic current produced by a multitude of temporal receptive fields is encoded into a sequence of action potentials by a spike generator modeled as a nonlinear dynamical system. Our approach builds on the observation that during any experiment, an entire neural circuit, including its receptive fields and biophysical spike generators, is projected onto the space of stimuli used to identify the circuit. Employing the reproducing kernel Hilbert space (RKHS) of trigonometric polynomials to describe input stimuli, we quantitatively describe the relationship between underlying circuit parameters and their projections. We also derive experimental conditions under which these projections converge to the true parameters. In doing so, we achieve the mathematical tractability needed to characterize the biophysical spike generator and identify the multitude of receptive fields. The algorithms obviate the need to repeat experiments in order to compute the neurons’ rate of response, rendering our methodology of interest to both experimental and theoretical neuroscientists.
机译:我们介绍了一种新的方法,可以对生物物理峰值处理神经回路进行完整的功能识别。所考虑的电路接受多维尖峰串作为其输入,并包括多个时间接收场和基于电势的动作电位生成模型。每个时间感受野描述了任意两个神经元之间所有突触的时空贡献,并结合了由树突树执行的(被动)处理。由多个时间接收场产生的聚集树突状电流通过建模为非线性动力系统的尖峰发生器编码为一系列动作电位。我们的方法建立在以下观察的基础上:在任何实验中,整个神经回路(包括其接收场和生物物理尖峰发生器)都投影到用于识别回路的刺激空间上。利用三角多项式的再现核希尔伯特空间(RKHS)来描述输入刺激,我们定量地描述了底层电路参数与其投影之间的关系。我们还得出了这些投影收敛到真实参数的实验条件。通过这样做,我们达到了表征生物物理尖峰发生器并识别众多感受野所需的数学可处理性。该算法消除了重复实验以计算神经元反应率的需要,这使我们的方法学受到了实验和理论神经科学家的关注。

著录项

  • 来源
    《Neural computation》 |2014年第2期|264-305|共42页
  • 作者单位

    Department of Electrical Engineering, Columbia University, New York, NY 10027, U.S.A. aurel@ee.columbia.edu;

    Department of Electrical Engineering, Columbia University, New York, NY 10027, U.S.A. yevgeniy@ee.columbia.edu;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号