首页> 外文期刊>Network Science and Engineering, IEEE Transactions on >Group-Based General Epidemic Modeling for Spreading Processes on Networks: GroupGEM
【24h】

Group-Based General Epidemic Modeling for Spreading Processes on Networks: GroupGEM

机译:基于组的一般疫情建模,用于传播网络的传播过程:集团

获取原文
获取原文并翻译 | 示例

摘要

We develop a group-based continuous-time Markov general epidemic modeling (GroupGEM) framework for any compartmental epidemic model (e.g., susceptible-infected-susceptible, susceptible-infected-recovered, susceptible-exposed-infected-recovered). Here, a group consists of a collection of individual nodes of a network. This model can be used to understand the critical dynamic characteristics of a stochastic epidemic spreading over large complex networks while being informative about the state of groups. Aggregating nodes by groups, the state-space becomes smaller than the one of individual-based approach at the cost of an aggregation error, which is bounded by the well-known isoperimetric inequality. We also develop a mean-field approximation of this framework to reduce the state-space size further. Finally, we extend the GroupGEM to multilayer networks. Individual-based frameworks are in general not computationally efficient. However, the individual-based approach is essential when the objective is to study the local dynamics at the individual level. Therefore, we propose a group-based framework to reduce the computational time of the Individual-based generalized epidemic modeling framework (GEMF) but retain its advantages.
机译:我们开发基于组的连续时间马尔可夫一般疫情(GroupGEM)框架,用于任何分区流行病模型(例如,易感感染易感,易感感染,易感曝光感染回收)。这里,组包括网络的各个节点的集合。该模型可用于了解大型复杂网络的随机疫情的临界动态特征,同时提供群体状态的信息。通过组聚合节点,状态空间比聚合误差的成本小于基于个体的方法之一,这是由众所周知的等异常不平等的界限。我们还开发了该框架的平均字段近似,以进一步降低状态空间大小。最后,我们将集团扩展到多层网络。基于个性的框架通常没有计算效率。然而,当目标是在个人级别研究本地动态时,基于个别的方法是必不可少的。因此,我们提出了一种基于组的框架,以减少基于各个广泛的流行病模型框架(GEMF)的计算时间,而是保持其优点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号