首页> 外文期刊>Nature Materials >Unification through disarray
【24h】

Unification through disarray

机译:混乱统一

获取原文
获取原文并翻译 | 示例

摘要

Joint motion is achieved through the transfer of muscle load from tendon to bone - two tissues with dramatically different compositions, structures and mechanical properties. From the continuum perspective, the Poisson ratios for stretching in this direction can differ by nearly one order of magnitude, while the moduli of tendon and bone along the direction of muscle force differ by nearly a hundredfold. From the structural perspective, both are hierarchically organized, with nanoscale tropocollagen triple helices bundling into micrometre-diameter fibrils, which in turn bundle into fibres hundreds of micrometres in diameter and many millimetres long. In bone, the fibrils are stiffened by the cross-linking caused by the insertion and coating of bioapatite mineral crystals. The tendon-to-bone attachment would be expected to fail from Bogy- or Williams-type free-edge singularities if stress concentrations at the interface were not attenuated with a suite of cross-scale deformation mechanisms. Indeed, the rates of failure after surgical repair pose a major challenge. How, then, does the healthy tendon-to-bone attachment achieve effective load transfer from one tissue to the other, and why does the healing attachment fail so frequently? The answer lies in a unique hierarchical transitional tissue that exists at the interface between these dissimilar materials, and identifying and restoring the resilience mechanisms of this material is now a major target for tendon-to-bone repair strategies.
机译:关节运动是通过将肌肉负荷从肌腱转移到骨骼-两种组织的成分,结构和机械特性截然不同的方式来实现的。从连续谱的角度来看,沿该方向拉伸的泊松比可以相差近一个数量级,而沿肌肉力方向的肌腱和骨骼的模量相差将近一百倍。从结构的角度来看,两者都是分层组织的,纳米级对流胶原三重螺旋捆扎成微米直径的原纤维,而原纤维又捆成直径数百微米,长几毫米的纤维。在骨骼中,原纤维由于生物磷灰石矿物晶体的插入和包覆而引起的交联而变硬。如果界面应力集中没有通过一系列跨尺度变形机制衰减,则预计肌腱到骨骼的附着会由于Bogy或Williams型的自由边缘奇异而失效。实际上,外科手术修复后的失败率是一个重大挑战。那么,健康的肌腱到骨骼的附着如何实现从一个组织到另一个组织的有效载荷转移,为什么愈合附着如此频繁地失败?答案在于存在于这些异种材料之间的界面处的独特的分层过渡组织,而如今,识别和恢复这种材料的弹性机制已成为腱-骨修复策略的主要目标。

著录项

  • 来源
    《Nature Materials》 |2017年第6期|607-608|共2页
  • 作者单位

    Bioinspired Engineering and Biomechanics Center (BEBC), the Key Laboratory of Biomedkal Information Engineering, Ministry of Education, School of Life Science and Technology,Xi'an Jiaotong University, Xi'an 710049, China,and the Department of Mechanical Engineeringand Materials Science, School of Engineering and Applied Science, and the Department of Neurological Surgery at Washington University in St Louis, Missouri 63130, USA;

    Department of Orthopedic Surgery, and the Department of Biomedical Engineering at Columbia University, New York 10032, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号