首页> 外文期刊>Journal of Linguistics >Randomized rule selection in transformation-based learning: a comparative study
【24h】

Randomized rule selection in transformation-based learning: a comparative study

机译:基于转换的学习中的随机规则选择:一项比较研究

获取原文
获取原文并翻译 | 示例

摘要

Transformation-Based Learning (TBL) is a relatively new machine learning method that has achieved notable success on language problems. This paper presents a variant of TBL, called Randomized TBL, that overcomes the training time problems of standard TBL without Sacrificing accuracy. It include a set of experiments on part-of-speech tagging in which the Size of the corpus and template set are varied. The results show that Randomize TBL Can address problems that are intractable in terms of training time for standard TBL.
机译:基于转换的学习(TBL)是一种相对较新的机器学习方法,已在语言问题上取得了显著成功。本文提出了一种TBL的变体,称为随机TBL,它在不牺牲准确性的情况下克服了标准TBL的训练时间问题。它包括一组关于词性标注的实验,其中语料库和模板集的大小各不相同。结果表明,随机TBL可以解决在标准TBL的训练时间方面难以解决的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号