首页> 外文期刊>Multimedia Tools and Applications >A feature dimension reduction technology for predicting DDoS intrusion behavior in multimedia internet of things
【24h】

A feature dimension reduction technology for predicting DDoS intrusion behavior in multimedia internet of things

机译:一种特征尺寸减少技术,用于预测多媒体互联网中的DDOS入侵行为

获取原文
获取原文并翻译 | 示例

摘要

Due to massive data flow and complexity of changeable data characteristics, the dimension disasters problems is ordinary existed in the prediction of the Distributed Denial of Services (DDoS) large-flow attack for multimedia Internet of Things, which will result in the following deficiency such as excessive consumption of computing, and storage resources, reduced analysis efficiency. In this paper, a novel method with the combination of matrix diversity and principal component analysis is proposed for DDoS feature reduction. Firstly, matrix diversity is used to reduce the multiple feature properties of DDoS, and then principal component analysis is used to reduce these features further. Then, the statistical characteristics of these correlations are analyzed. Finally, real-time attack detection is carried out based on mahalanobis distance (MD). It is obvious demonstrated that the proposed method has higher prediction accuracy and more computational efficiency than the traditional method.
机译:由于大规模的数据流和可变数据特性的复杂性,维度灾害问题普通存在于预测多媒体互联网的多媒体服务(DDOS)大流攻击中的预测,这将导致以下缺陷过度消耗计算,存储资源,降低分析效率。本文提出了一种具有基质多样性和主成分分析的组合的新方法,用于DDOS特征减少。首先,矩阵分集用于减少DDOS的多个特征属性,然后使用主成分分析进一步降低这些特征。然后,分析了这些相关性的统计特征。最后,基于Mahalanobis距离(MD)进行实时攻击检测。显而易见的是,该方法具有更高的预测精度和比传统方法更高的计算效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号