首页> 外文期刊>Journal of supercomputing >Distributed intrusion detection scheme using dual-axis dimensionality reduction for Internet of things (IoT)
【24h】

Distributed intrusion detection scheme using dual-axis dimensionality reduction for Internet of things (IoT)

机译:分布式入侵检测方案使用双轴维度减少用于物联网(物联网)

获取原文
获取原文并翻译 | 示例

摘要

The immense growth in the cyber world has given birth to various types of cybercrimes in the Internet of things (IoT). Cybercrimes have breached the multiple levels of cybersecurity that is one of the major issues in the IoT networks. Due to the rise in IoT applications, both devices and services are prone to security attacks and intrusions. The intrusion breaches the data packet extracted from different nodes deployed in the IoT network. Most of the intrusive attacks are very near variants of previously marked cyberattacks containing many repetitive data and features. And to detect the intrusion, the data packet needs to be analyzed. This article presents a novel scheme, i.e., dual-axis dimensionality reduction, that utilizes Kalman filter and salp swarm algorithm (coded as KF-SSA) for analyzing and minimizing the data packet. The proposed data reduction scheme is utilized with KELM-based multiclass classifier to efficiently detect intrusion in the IoT network (KF-SSA with KELM). The proposed method's overall results are evaluated using standard intrusion detection datasets, i.e., NSL-KDD, KYOTO 2006+ (2015), CICIDS2017, and CICIDS2018 (AWS). The result from the proposed data reduction technique obtains highly reduced data, i.e., 70.% for NSL-KDD and 86.43% for CICIDS2017. The analyzed result shows high detection accuracy of 99.9% for NSL-KDD and 95.68% for CICIDS2017 with decreased computational time.
机译:网络世界的巨大增长在物联网(物联网)中赋予了各种各样的网络犯罪。网络犯罪违反了多个水平的网络安全,这是物联网网络中的主要问题之一。由于IOT应用程序的升高,设备和服务都容易发生安全攻击和入侵。侵入违反了从部署在IOT网络中的不同节点中提取的数据包。大多数侵入性攻击非常近乎包含包含许多重复数据和特征的网络图案的变体。为了检测入侵,需要分析数据包。本文提出了一种新颖的方案,即双轴维度减少,其利用卡尔曼滤波器和SALP群算法(编码为KF-SSA)来分析和最小化数据包。所提出的数据减少方案用于基于Kelm的多字符分类器,以有效地检测IOT网络中的入侵(KF-SSA与KELM)。使用标准入侵检测数据集,即NSL-KDD,Kyoto 2006+(2015),Cicids2017和Cicids2018(AWS)评估所提出的方法的总体结果。所提出的数据减少技术的结果获得高度减少的数据,即NSL-KDD的70.%,为Cicids2017的86.43%。分析结果显示了NSL-KDD的高检测精度为99.9%,Cicids2017的95.68%,计算时间降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号