首页> 外文期刊>Multimedia Tools and Applications >T-MAN: a neural ensemble approach for person re-identification using spatio-temporal information
【24h】

T-MAN: a neural ensemble approach for person re-identification using spatio-temporal information

机译:T-man:使用时空信息重新识别人的神经集合方法

获取原文
获取原文并翻译 | 示例

摘要

Person re-identification plays a central role in tracking and monitoring crowd movement in public places, and hence it serves as an important means for providing public security in video surveillance application sites. The problem of person re-identification has received significant attention in the past few years, and with the introduction of deep learning, several interesting approaches have been developed. In this paper, we propose an ensemble model called Temporal Motion Aware Network (T-MAN) for handling the visual context and spatio-temporal information jointly from the input video sequences. Our methodology makes use of the long-range motion context with recurrent information for establishing correspondences among multiple cameras. The proposed T-MAN approach first extracts explicit frame-level feature descriptors from a given video sequence by using three different sub-networks (FPAN, MPN, and LSTM), and then aggregates these models using an ensemble technique to perform re-identification. The method has been evaluated on three publicly available data sets, namely, the PR1D-2011, iLIDS-VID, and MARS, and re-identification accuracy of 83.0%, 73.5%, and 83.3% have been obtained from these three data sets, respectively. Experimental results emphasize the effectiveness of our approach and its superiority over the state-of-the-art techniques for video-based person re-identification.
机译:人重新识别在跟踪和监测公共场所的人群运动中起着核心作用,因此它是在视频监控应用网站中提供公共安全的重要手段。的人重新鉴定的问题已收到显著的关注,在过去的几年中,并引进深的学习,一些有趣的办法已经制定。在本文中,我们提出一种用于从输入视频序列处理可视上下文和时空信息共同称为时间运动感知网络(T-MAN)的整体模型。我们的方法提供了利用远程运动背景,具有用于在多个摄像机之间建立相应的经常性信息。所提出的T-MAR方法首先通过使用三个不同的子网(FPAN,MPN和LSTM)来提取来自给定视频序列的显式帧级特征描述符,然后使用集合技术聚合这些模型来执行重新识别。该方法已在三种公开的数据集中进行评估,即PR1D-2011,ILIDS-VID和MARS,并从这三种数据集中获得了83.0%,73.5%和83.3%的重新识别准确度,分别。实验结果强调我们的方法和它优于国家的最先进的技术基于视频的人重新鉴定的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号