首页> 外文期刊>Multimedia Tools and Applications >Person Re-identification in Videos by Analyzing Spatio-temporal Tubes
【24h】

Person Re-identification in Videos by Analyzing Spatio-temporal Tubes

机译:人通过分析时空管重新识别视频中的视频

获取原文
获取原文并翻译 | 示例

摘要

Typical person re-identification frameworks search for k best matches in a gallery of images that are often collected in varying conditions. The gallery usually contains image sequences for video re-identification applications. However, such a process is time consuming as video re-identification involves carrying out the matching process multiple times. In this paper, we propose a new method that extracts spatio-temporal frame sequences or tubes of moving persons and performs the re-identification in quick time. Initially, we apply a binary classifier to remove noisy images from the input query tube. In the next step, we use a key-pose detection-based query minimization technique. Finally, a hierarchical re-identification framework is proposed and used to rank the output tubes. Experiments with publicly available video re-identification datasets reveal that our framework is better than existing methods. It ranks the tubes with an average increase in the CMC accuracy of 6-8% across multiple datasets. Also, our method significantly reduces the number of false positives. A new video re-identification dataset, named Tube-based Re-identification Video Dataset (TRiViD), has been prepared with an aim to help the re-identification research community.
机译:典型的人重新识别框架在通常在不同条件下收集的图像图库中搜索K最佳匹配。该画廊通常包含视频重新识别应用程序的图像序列。然而,这种过程是耗时的,因为视频重新识别涉及多次执行匹配过程。在本文中,我们提出了一种提取运动人员的时空帧序列或管的新方法,并在速度快速执行重新识别。最初,我们应用二进制分类器以从输入查询管中删除噪声图像。在下一步中,我们使用基于密钥姿态检测的查询最小化技术。最后,提出了分层重新识别框架并用于对输出管进行排。具有公开视频重新识别数据集的实验表明,我们的框架优于现有方法。它在多个数据集中排列了平均值的平均值为6-8%的管道。此外,我们的方法显着降低了误报的数量。已经准备了一个新的视频重新识别数据集,命名为基于管的重新识别视频数据集(第三届),并旨在帮助重新识别研究界。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号