首页> 外文期刊>IEEE transactions on multimedia >Learning Crowdsourced User Preferences for Visual Summarization of Image Collections
【24h】

Learning Crowdsourced User Preferences for Visual Summarization of Image Collections

机译:学习众包的用户首选项以对图像集合进行视觉汇总

获取原文
获取原文并翻译 | 示例

摘要

In this paper we propose a novel approach to selecting images suitable for inclusion in the visual summaries. The approach is grounded in insights about how people summarize image collections. We utilize the Amazon Mechanical Turk crowdsourcing platform to obtain a large number of manually created visual summaries as well as information about criteria for image inclusion in the summary. Based on these large-scale user tests, we propose an automatic image selection approach, which jointly utilizes the analysis of image content, context, popularity, visual aesthetic appeal as well as the sentiment derived from the comments posted on the images. In our approach we do not describe images based on their properties only, but also in the context of semantically related images, which improves robustness and effectively enables propagation of sentiment, aesthetic appeal as well as various inherent attributes associated with a particular group of images. We discuss the phenomenon of a low inter-user agreement, which makes an automatic evaluation of visual summaries a challenging task and propose a solution inspired by the text summarization and machine translation communities. The experiments performed on a collection of geo-referenced Flickr images demonstrate the effectiveness of our image selection approach.
机译:在本文中,我们提出了一种新颖的方法来选择适合包含在视觉摘要中的图像。该方法基于对人们如何总结图像集合的见解。我们利用Amazon Mechanical Turk众包平台获取大量手动创建的视觉摘要以及有关摘要中图像包含标准的信息。基于这些大规模的用户测试,我们提出了一种自动图像选择方法,该方法结合了对图像内容,上下文,受欢迎程度,视觉美学吸引力以及从图像评论中得出的情感的分析。在我们的方法中,我们不仅基于图像的属性来描述图像,而且还基于语义相关的图像来描述图像,这提高了鲁棒性并有效地传播了情感,美感以及与特定图像组相关的各种固有属性。我们讨论了用户间协议不足的现象,这使视觉摘要的自动评估成为一项艰巨的任务,并提出了一种受文本摘要和机器翻译社区启发的解决方案。在一系列参考了地理的Flickr图像上进行的实验证明了我们的图像选择方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号