首页> 外文期刊>Multimedia, IEEE Transactions on >Learning Linear Regression via Single-Convolutional Layer for Visual Object Tracking
【24h】

Learning Linear Regression via Single-Convolutional Layer for Visual Object Tracking

机译:通过单卷积层学习线性回归以进行可视对象跟踪

获取原文
获取原文并翻译 | 示例

摘要

Learning a large-scale regression model has proven to be one of the most successful approaches for visual tracking as in recent correlation filter (CF)- based trackers. Different from the conventional CF-based algorithms in which the regression model is solved based on circulant training samples, we propose learning linear regression models via a single-convolutional layer with the gradient descent (GD) technique. In our convolution-based approach, the samples are cropped from an image in a sliding-window manner rather than being circularly shifted from one base sample. As a result, the abundant background context in the images can be fully exploited to learn a robust tracker. The proposed tracker is based on two independent regression models: a holistic regression model and a texture regression model. The holistic regression model is trained based on the entire object patch to predict the object location, whereas the texture regression model is trained based on the local object textures. The foreground map outputted by the texture regression model is not only helpful to boost the location prediction in the case of large variations, but is also an important clue for estimating the object size. With the foreground map outputted by the texture regression model, we are able to estimate the object size by optimizing a novel objective function based on object-background contrast. Our extensive experiments on four popular visual tracking datasets OTB-50, OTB-100, VOT-2016, and TempleColor have proved that the proposed algorithm achieves outstanding performance and outperforms most CF-based trackers.
机译:与最近的基于相关过滤器(CF)的跟踪器一样,学习大规模回归模型已被证明是视觉跟踪最成功的方法之一。与传统的基于CF的算法不同,在传统的基于CF的算法中,基于循环训练样本来求解回归模型,我们提出了通过梯度下降(GD)技术通过单卷积层学习线性回归模型的方法。在基于卷积的方法中,样本是从图像中以滑动窗口的方式裁剪的,而不是从一个基本样本中循环移位。结果,可以充分利用图像中丰富的背景上下文来学习强大的跟踪器。提出的跟踪器基于两个独立的回归模型:整体回归模型和纹理回归模型。基于整个对象补丁训练整体回归模型以预测对象位置,而基于局部对象纹理训练纹理回归模型。纹理回归模型输出的前景图不仅有助于在变化较大的情况下提高位置预测,而且还是估计对象大小的重要线索。使用纹理回归模型输出的前景图,我们能够通过基于对象与背景的对比度优化新颖的目标函数来估计对象的大小。我们对四种流行的视觉跟踪数据集OTB-50,OTB-100,VOT-2016和TempleColor进行了广泛的实验,证明了该算法具有出色的性能,并且胜过大多数基于CF的跟踪器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号