首页> 外文期刊>Multimedia Tools and Applications >Single online visual object tracking with enhanced tracking and detection learning
【24h】

Single online visual object tracking with enhanced tracking and detection learning

机译:单一在线视觉对象跟踪,具有增强的跟踪和检测学习功能

获取原文
获取原文并翻译 | 示例

摘要

Single online visual object tracking has been an active research topic for its wide application on various tasks. In this paper, a new framework and related approaches are proposed to solve this problem consisting of enhanced tracking and detection learning. In the enhanced tracking part, an appearance model based on correlation filter with deep CNN features and a dynamic model using improved pyramid optical flow method are employed. Two models cooperate together to depict object appearance and capture target trajectory, which also contribute to provide training samples for detection learning. In the detection learning part, a cascade classifier and P-N learning scheme are employed to reinitialize tracking when model drift occurs. Data experiments on several challenging benchmarks show that the presented method is comparable to the state-of-the-art.
机译:单一的在线视觉对象跟踪已成为其在各种任务中的广泛应用的活跃研究主题。本文提出了一种新的框架和相关方法来解决此问题,包括增强的跟踪和检测学习。在增强跟踪部分中,采用了基于具有深CNN特征的相关滤波器的外观模型和使用改进的金字塔光流方法的动态模型。两种模型协同工作以描绘对象的外观并捕获目标轨迹,这也有助于提供用于检测学习的训练样本。在检测学习部分,当模型漂移发生时,采用级联分类器和P-N学习方案重新初始化跟踪。在几个具有挑战性的基准上进行的数据实验表明,该方法可与最新技术相媲美。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号