首页> 外文期刊>IEEE transactions on multimedia >Heterogeneous Hashing Network for Face Retrieval Across Image and Video Domains
【24h】

Heterogeneous Hashing Network for Face Retrieval Across Image and Video Domains

机译:跨图像和视频域的人脸检索异构哈希网络

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a heterogeneous hashing network to generate effective and compact hash representations of both face images and face videos for face retrieval across image and video domains. The network contains an image branch and a video branch to project face images and videos into a common space, respectively. Then, the non-linear hash functions are learned in the common space to obtain the corresponding binary hash representations. The network is trained with three loss functions: 1) the Fisher loss; 2) the softmax loss; and 3) the triplet ranking loss. The Fisher loss uses the difference form of within-class and between-class scatter and is appropriate for the mini-batch-based optimization method. The Fisher loss together with the softmax loss is exploited to enhance the discriminative power of the common space. The triplet ranking loss is enforced on the final binary hash representations to improve retrieval performance. Experiments on a large-scale face video dataset and two challenging TV-series datasets demonstrate the effectiveness of the proposed method.
机译:在本文中,我们提出了一种异构哈希网络,以生成有效且紧凑的人脸图像和人脸视频哈希表示,以实现跨图像和视频域的人脸检索。该网络包含一个图像分支和一个视频分支,分别将面部图像和视频投影到一个公共空间中。然后,在公共空间中学习非线性哈希函数以获得相应的二进制哈希表示。该网络通过以下三种损失函数进行训练:1)Fisher损失; 2)softmax损失; 3)三元组排名损失。 Fisher损失使用类内和类间散布的差异形式,适用于基于小批量的优化方法。利用Fisher损失和softmax损失来增强公共空间的判别能力。在最终的二进制散列表示中强制执行三元组排序损失,以提高检索性能。在大规模的人脸视频数据集和两个具有挑战性的电视系列数据集上进行的实验证明了该方法的有效性。

著录项

  • 来源
    《IEEE transactions on multimedia》 |2019年第3期|782-794|共13页
  • 作者单位

    Beijing Inst Technol, Sch Comp Sci, Beijing Lab Intelligent Informat Technol, Beijing 100081, Peoples R China;

    Beijing Inst Technol, Sch Comp Sci, Beijing Lab Intelligent Informat Technol, Beijing 100081, Peoples R China;

    Beijing Inst Technol, Sch Comp Sci, Beijing Lab Intelligent Informat Technol, Beijing 100081, Peoples R China;

    Beijing Inst Technol, Sch Comp Sci, Beijing Lab Intelligent Informat Technol, Beijing 100081, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Face retrieval; image and video domains; deep CNN; hash learning;

    机译:人脸检索;图像和视频域;深度CNN;哈希学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号