首页> 外文期刊>Neurocomputing >Hypergraph Spectral Hashing for image retrieval with heterogeneous social contexts
【24h】

Hypergraph Spectral Hashing for image retrieval with heterogeneous social contexts

机译:超图谱散列技术用于异构社会背景下的图像检索

获取原文
获取原文并翻译 | 示例

摘要

The development of social media brings great challenges to image retrieval on both efficiency and accuracy. In addition to achieving fast similarity search over large scale data it is very crucial to represent the complex and high-order relationships among the social contents to improve the semantic understanding of social images. In this paper, unified hypergraph is implemented to model the various relationships among images and other contexts in social media. Then we extend traditional spectral hashing to hypergraph to accelerate similarity search of social images by mapping semantically related vertices into similar binary codes within a short Hamming distance. In addition, out-of-sample extension is implemented in a supervised manner and different strategies of fusing different social contexts are compared and discussed in this work. We evaluated our approach on the dataset crawled from Flickr and the experiment results indicate that our proposed HSH approach is both efficient and effective.
机译:社交媒体的发展给图像检索的效率和准确性带来了巨大挑战。除了在大规模数据上实现快速相似性搜索之外,代表社交内容之间的复杂和高级关系以提高对社交图像的语义理解也非常关键。在本文中,实现了统一的超图来建模社交媒体中图像与其他上​​下文之间的各种关系。然后,我们将传统的频谱哈希技术扩展到超图,以通过将语义相关的顶点映射到较短的汉明距离内的相似二进制代码来加快社交图像的相似性搜索。此外,在监督下实施了超出样本的扩展,并且在本文中对融合不同社交环境的不同策略进行了比较和讨论。我们对从Flickr爬取的数据集评估了我们的方法,实验结果表明我们提出的HSH方法既有效又有效。

著录项

  • 来源
    《Neurocomputing》 |2013年第7期|49-58|共10页
  • 作者单位

    College of Computer Science and Technology, Hangzhou, Zhejiang, China;

    College of Computer Science and Technology, Hangzhou, Zhejiang, China;

    College of Computer Science and Technology, Hangzhou, Zhejiang, China;

    College of Computer Science and Technology, Hangzhou, Zhejiang, China;

    College of Computer Science and Technology, Hangzhou, Zhejiang, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Hypergraph; Hashing; Social media;

    机译:超图散列;社交媒体;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号