首页> 外文期刊>IEEE Transactions on Image Processing >Deep Heterogeneous Hashing for Face Video Retrieval
【24h】

Deep Heterogeneous Hashing for Face Video Retrieval

机译:面部视频检索深度异构散列

获取原文
获取原文并翻译 | 示例

摘要

Retrieving videos of a particular person with face image as query via hashing technique has many important applications. While face images are typically represented as vectors in Euclidean space, characterizing face videos with some robust set modeling techniques (e.g. covariance matrices as exploited in this study, which reside on Riemannian manifold), has recently shown appealing advantages. This hence results in a thorny heterogeneous spaces matching problem. Moreover, hashing with handcrafted features as done in many existing works is clearly inadequate to achieve desirable performance for this task. To address such problems, we present an end-to-end Deep Heterogeneous Hashing (DHH) method that integrates three stages including image feature learning, video modeling, and heterogeneous hashing in a single framework, to learn unified binary codes for both face images and videos. To tackle the key challenge of hashing on manifold, a well-studied Riemannian kernel mapping is employed to project data (i.e. covariance matrices) into Euclidean space and thus enables to embed the two heterogeneous representations into a common Hamming space, where both intra-space discriminability and inter-space compatibility are considered. To perform network optimization, the gradient of the kernel mapping is innovatively derived via structured matrix backpropagation in a theoretically principled way. Experiments on three challenging datasets show that our method achieves quite competitive performance compared with existing hashing methods.
机译:通过散列技术检索具有面部图像的特定人的视频具有许多重要应用。虽然面部图像通常表示为欧几里德空间中的载体,但是具有一些坚固的设定建模技术的面部视频(例如,在本研究中利用的协方差矩阵,其驻留在Riemannian歧管上),最近显示了吸引人的优势。因此导致棘手的异构空间匹配问题。此外,在许多现有作品中完成的手工制作功能散列显然不足以实现这项任务的理想性能。为了解决这些问题,我们介绍了一个端到端的深度异构散列(DHH)方法,该方法集成了一个包括图像特征学习,视频建模和异构散列的三个阶段,用于学习双面图像的统一二进制代码视频。为了解决歧管对歧管的关键挑战,研究了一个良好的黎曼内核映射,用于将数据(即协方差矩阵)项目进入欧几里德空间,从而使得将两个异构表示嵌入到共同的汉明空间中,其中空间考虑可怜的性和空间间兼容性。为了执行网络优化,内核映射的梯度是通过以理论上原则的方式通过结构化矩阵反向的创新地导出的。三个具有挑战性的数据集的实验表明,与现有散列方法相比,我们的方法实现了相当竞争的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号