首页> 外文期刊>IEEE Transactions on Image Processing >Unsupervised Deep Video Hashing via Balanced Code for Large-Scale Video Retrieval
【24h】

Unsupervised Deep Video Hashing via Balanced Code for Large-Scale Video Retrieval

机译:通过平衡代码进行无监督的深度视频哈希处理,以进行大规模视频检索

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a deep hashing framework, namely, unsupervised deep video hashing (UDVH), for large-scale video similarity search with the aim to learn compact yet effective binary codes. Our UDVH produces the hash codes in aself-taughtmanner by jointly integrating discriminative video representation with optimal code learning, where an efficient alternating approach is adopted to optimize the objective function. The key differences from most existing video hashing methods lie in: 1) UDVH is an unsupervised hashing method that generates hash codes by cooperatively utilizing feature clustering and a specifically designed binarization with the original neighborhood structure preserved in the binary space and 2) a specific rotation is developed and applied onto video features such that the variance of each dimension can be balanced, thus facilitating the subsequent quantization step. Extensive experiments performed on three popular video datasets show that the UDVH is overwhelmingly better than the state of the arts in terms of various evaluation metrics, which makes it practical in real-world applications.
机译:本文提出了一种用于大型视频相似度搜索的深度哈希框架,即无监督深度视频哈希(UDVH),旨在学习紧凑而有效的二进制代码。我们的UDVH在 n <斜体xmlns:mml = “ http://www.w3.org/1998/Math/MathML ” xmlns:xlink = “ http://www.w3.org / 1999 / xlink “>自学成语的 nmanner,将判别式视频表示与最佳代码学习联合集成,其中采用有效的交替方法来优化目标函数。与大多数现有视频散列方法的主要区别在于:1)UDVH是一种无监督的散列方法,该方法通过协同利用特征聚类和经过专门设计的二进制化来生成散列码,并使用保留在二进制空间中的原始邻域结构来进行编码;以及2)特定轮换可以将其开发并应用于视频功能,以便可以平衡每个维度的方差,从而简化了后续的量化步骤。在三个流行的视频数据集上进行的广泛实验表明,就各种评估指标而言,UDVH绝对优于现有技术,这使其在实际应用中具有实用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号