首页> 外文期刊>Multibody System Dynamics >Driving simulator with double-wishbone suspension using efficient block-triangularized kinematic equations
【24h】

Driving simulator with double-wishbone suspension using efficient block-triangularized kinematic equations

机译:使用有效的块三角运动学方程式,具有双叉骨悬架的驾驶模拟器

获取原文
获取原文并翻译 | 示例

摘要

When modeled with ideal joints, many vehicle suspensions contain closed kinematic chains, or kinematic loops, and are most conveniently modeled using a set of generalized coordinates of cardinality exceeding the degrees-of-freedom of the system. Dependent generalized coordinates add nonlinear algebraic constraint equations to the ordinary differential equations of motion, thereby producing a set of differential-algebraic equations that may be difficult to solve in an efficient yet precise manner. Several methods have been proposed for simulating such systems in real time, including index reduction, model simplification, and constraint stabilization techniques. In this work, the equations of motion for a double-wishbone suspension are formulated symbolically using linear graph theory. The embedding technique is applied to eliminate the Lagrange multipliers from the dynamic equations and obtain one ordinary differential equation for each independent acceleration. Symbolic computation is then used to triangularize a subset of the kinematic constraint equations, thereby producing a recursively solvable system for calculating a subset of the dependent generalized coordinates. Thus, the kinematic equations are reduced to a block-triangular form, which results in a more computationally efficient solution strategy than that obtained by iterating over the original constraint equations. The efficiency of this block-triangular kinematic solution is exploited in the real-time simulation of a vehicle with double-wishbone suspensions on both axles, which is implemented in a hardware- and operator-in-the-loop driving simulator.
机译:当用理想的关节进行建模时,许多车辆悬架包含闭合的运动学链或运动学环,最方便的是使用一组超过系统自由度的基数广义坐标进行建模。相依的广义坐标将非线性代数约束方程添加到运动的常微分方程,从而生成一组微分代数方程,这些方程可能很难以有效而精确的方式求解。已经提出了用于实时模拟这样的系统的几种方法,包括索引减少,模型简化和约束稳定技术。在这项工作中,使用线性图理论象征性地绘制了双叉骨悬架的运动方程。应用嵌入技术从动态方程中消除拉格朗日乘数,并为每个独立加速度获得一个常微分方程。然后使用符号计算将运动学约束方程的子集三角化,从而产生用于计算从属广义坐标子集的递归可解系统。因此,运动方程简化为块三角形形式,与通过迭代原始约束方程获得的解决方案相比,这产生了一种计算效率更高的求解策略。这种实时三角运动学解决方案的效率可用于在两个轴上均具有双叉骨悬架的车辆的实时仿真中,该仿真在硬件和驾驶员在环驾驶模拟器中实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号