首页> 外文期刊>Modelling and simulation in engineering >Time-Optimal Trajectory Planning along Parametric Polynomial Lane-Change Curves with Bounded Velocity and Acceleration: Simulations for a Unicycle Based on Numerical Integration
【24h】

Time-Optimal Trajectory Planning along Parametric Polynomial Lane-Change Curves with Bounded Velocity and Acceleration: Simulations for a Unicycle Based on Numerical Integration

机译:速度和加速度有界的参数多项式车道变化曲线的时间最优轨迹规划:基于数值积分的单轮车仿真

获取原文
获取原文并翻译 | 示例

摘要

G2 lane-change path imposes symmetric conditions on the path geometric properties. This paper presents the comparative study of time-optimal velocities to minimize the time needed for traversal of three planar symmetric parametric polynomial lane-change paths followed by an autonomous vehicle, assuming that the neighboring lane is free. A simulated model based on unicycle that accounts for the acceleration and velocity bounds and is particularly simple for generating the time-optimal path parameterization of each lane-change path is adopted. We base the time-optimal trajectory simulations on numerical integration on a path basis under two different end conditions representing sufficient and restricted steering spaces with remarkable difference in allowable maximum curvature. The rest-to-rest lane-change maneuvering simulations highlight the effect of the most relevant path geometric properties on minimal travel time: a faster lane-change curve such as a quintic Bezier curve followed by a unicycle tends to be shorter in route length and lower in maximum curvature to have achievable highest speed at the maximum curvature points. The results have implications to path selection for parallel parking and allow the design of continuous acceleration profile via time scaling for smooth, faster motion along a given path. This could provide a reference for on-road lane-change trajectory planning along a given path other than parametric polynomials for significantly more complex, complete higher-dimensional highly nonlinear dynamic model of autonomous ground vehicle considering aerodynamic forces, tire and friction forces of tire-ground interaction, and terrain topology in real-world.
机译:G2换道路径对路径的几何属性施加了对称条件。本文提出了时间最优速度的比较研究,以使遍历三个平面对称参数多项式车道变换路径以及自动驾驶汽车所经过的时间最小化(假设相邻车道是自由的)。采用基于单轮脚踏车的模拟模型,该模型考虑了加速度和速度边界,并且对于生成每个车道变换路径的时间最优路径参数化特别简单。我们在两个不同的端部条件下,基于路径上的数值积分,建立了时间最优轨迹模拟,这些条件代表了足够的和受限的转向空间,最大允许曲率差异很大。休息到休息的车道变换操纵仿真强调了最相关的路径几何特性对最小行驶时间的影响:更快的车道变换曲线(如五次贝塞尔曲线和单轮脚踏车)往往会缩短路径长度,最大曲率较低时,在最大曲率点处可达到最高速度。结果对平行停车的路径选择有影响,并允许通过时间缩放来设计连续的加速度曲线,以沿着给定的路径进行平滑,更快的运动。这可以为参数化多项式之外的沿给定路径的道路变道轨迹规划提供参考,从而为考虑到空气动力,轮胎和轮胎摩擦力的自主地面车辆提供更为复杂,完整的高维高度非线性动力学模型。地面互动以及现实世界中的地形拓扑。

著录项

  • 来源
    《Modelling and simulation in engineering》 |2018年第2018期|9348907.1-9348907.19|共19页
  • 作者单位

    Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan;

    Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan;

    Institute of Information Science, Academia Sinica, Taipei 115, Taiwan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号