首页> 外文期刊>IEEE transactions on mobile computing >Towards Personalized Task-Oriented Worker Recruitment in Mobile Crowdsensing
【24h】

Towards Personalized Task-Oriented Worker Recruitment in Mobile Crowdsensing

机译:在移动人群中招募个人化的任务型工人招募

获取原文
获取原文并翻译 | 示例

摘要

Worker recruitment in mobile crowdsensing systems aims to recruit the most suitable users to perform tasks with high quality and in real-time. Many worker recruitment or task matching mechanisms have been proposed, especially for crowdsourcing platforms, where content information of tasks from the implicit feedback of workers' attendance is extensively exploited to help workers find preferred tasks efficiently. Different from traditional crowdsourcing systems, tasks in mobile crowdsensing systems are usually time-sensitive and location-dependent which also play a crucial role in worker recruitment. However, these context information have not been effectively explored for user recruitment in mobile crowdsensing systems. In this paper, we propose a novel personalized task-oriented worker recruitment mechanism for mobile crowdsensing systems based on a careful characterization of workers' preference. In particular, we fully exploit the content information (e.g., task category, task description) together with the context information (e.g., task time, task location) from the implicit feedback of workers' attendance to accurately model workers' preference on tasks. Moreover, we regard the task-worker fitness prediction as a binary classification problem and utilize the Logit model to integrate the heterogeneous factors into a single framework to predict the matching probability of each task-worker pair. Finally, the workers with the highest matching probability are recruited proactively for each new task. Extensive experiments on real-world datasets demonstrate that the proposed mechanism achieves better performance than the benchmarks.
机译:移动人群系统中的工人招聘旨在招募最合适的用户,以高质量和实时执行任务。已经提出了许多工人招聘或任务匹配机制,特别是对于众包平台,从工人出席的隐性反馈的内容信息广泛利用,以帮助工作人员有效地找到首选任务。与传统的众包系统不同,移动人群系统中的任务通常是时间敏感的和位置依赖,这也在工人招聘中发挥着至关重要的作用。但是,在移动人群系统中的用户招聘中,尚未有效地探索这些上下文信息。在本文中,我们提出了一种基于工人偏好的仔细表征的移动众多的移动众多工作人员招聘机制。特别是,我们完全利用内容信息(例如,任务类别,任务说明)以及从工人考勤的隐式反馈中的上下文信息(例如,任务时间,任务位置)以及准确地模拟工作人员对任务的偏好。此外,我们将任务工作人员健身预测视为二进制分类问题,并利用Logit模型将异构因素集成到一个框架中以预测每个任务工作人员对的匹配概率。最后,为每项新任务主动招募具有最高匹配概率的工人。关于现实世界数据集的广泛实验表明,拟议的机制比基准更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号