首页> 外文期刊>IEEE transactions on industrial informatics >A Personalized Privacy Protection Framework for Mobile Crowdsensing in IIoT
【24h】

A Personalized Privacy Protection Framework for Mobile Crowdsensing in IIoT

机译:IIOT中的移动众一的个人化隐私保护框架

获取原文
获取原文并翻译 | 示例

摘要

With the rapid digitalization of various industries, mobile crowdsensing (MCS), an intelligent data collection and processing paradigm of the industrial Internet of Things, has provided a promising opportunity to construct powerful industrial systems and provide industrial services. The existing unified privacy strategy for all sensing data results in excessive or insufficient protection and low quality of crowdsensing services (QoCS) in MCS. To tackle this issue, in this article we propose a personalized privacy protection (PERIO) framework based on game theory and data encryption. Initially, we design a personalized privacy measurement algorithm to calculate users' privacy level, which is then combined with game theory to construct a rational uploading strategy. Furthermore, we propose a privacy-preserving data aggregation scheme to ensure data confidentiality, integrity, and real-timeness. Theoretical analysis and ample simulations with real trajectory dataset indicate that the PERIO scheme is effective and makes a reasonable balance between retaining high QoCS and privacy.
机译:随着各种行业的快速数​​字化,移动人群(MCS),智能数据收集和工业互联网互联网的处理范式,为建造强大的工业系统提供了一个有希望的机会,并提供工业服务。所有传感数据的现有统一隐私策略导致MCS中的保护和低质量的保护和低质量的群体服务(QOCS)。为了解决这个问题,在本文中,我们提出了基于博弈论和数据加密的个性化隐私保护(Perio)框架。最初,我们设计一个个性化隐私测量算法来计算用户的隐私水平,然后与游戏理论结合构建理性上传策略。此外,我们提出了隐私保留数据聚合方案,以确保数据机密性,完整性和实时性。具有实际轨迹数据集的理论分析和充分模拟表明Perio方案是有效的,并在保留高危险和隐私之间进行合理的平衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号