首页> 外文期刊>Mobile Computing, IEEE Transactions on >DaGCM: A Concurrent Data Uploading Framework for Mobile Data Gathering in Wireless Sensor Networks
【24h】

DaGCM: A Concurrent Data Uploading Framework for Mobile Data Gathering in Wireless Sensor Networks

机译:DaGCM:无线传感器网络中用于移动数据收集的并发数据上载框架

获取原文
获取原文并翻译 | 示例

摘要

Data uploading time constitutes a large portion of mobile data gathering time in wireless sensor networks. By equipping multiple antennas on the mobile collector, data uploading time can be greatly shortened. However, previous works only treated wireless link capacity as a constant and ignored power control on sensors, which would significantly deviate from the real wireless environments. To overcome this problem, in this paper we propose a new data gathering cost minimization framework for mobile data gathering in wireless sensor networks by considering dynamic wireless link capacity and power control jointly. Our new framework not only allows concurrent data uploading from sensors to the mobile collector, but also determines transmission power under elastic link capacities. We study the problem under constraints of flow conservation, energy consumption, elastic link capacity, transmission compatibility, and sojourn time. We employ the subgradient iteration algorithm to solve the minimization problem. We first relax the problem with Lagrangian dualization, then decompose the original problem into several subproblems, and present distributed algorithms to derive data rate, link flow and routing, power control, and transmission compatibility. For the mobile collector, we also propose a subalgorithm to determine sojourn time at different stopping locations. Finally, we provide extensive simulation results to demonstrate the convergence and robustness of proposed algorithms. The results reveal 20 percent shorter data collection latency on average with lower energy consumptions compared to previous works as well as lower data gathering cost and robustness in case of node failures.
机译:数据上传时间占无线传感器网络中移动数据收集时间的很大一部分。通过在移动收集器上配备多个天线,可以大大缩短数据上传时间。但是,以前的工作仅将无线链路容量视为恒定的,并且忽略了传感器的功率控制,这将大大偏离实际的无线环境。为了克服这个问题,在本文中,我们通过综合考虑动态无线链路容量和功率控制,为无线传感器网络中的移动数据收集提出了一个新的数据收集成本最小化框架。我们的新框架不仅允许并发数据从传感器上传到移动收集器,而且还可以确定弹性链路容量下的传输功率。我们研究了在流量守恒,能耗,弹性链路容量,传输兼容性和停留时间的约束下的问题。我们采用次梯度迭代算法来解决最小化问题。我们首先使用拉格朗日对偶来放松问题,然后将原始问题分解为几个子问题,然后提出分布式算法以得出数据速率,链路流和路由,功率控制以及传输兼容性。对于移动收集器,我们还提出了一个子算法来确定在不同停止位置的停留时间。最后,我们提供了广泛的仿真结果,以证明所提出算法的收敛性和鲁棒性。结果表明,与以前的工作相比,数据收集延迟平均缩短了20%,能耗更低,并且在发生节点故障的情况下,数据收集成本和健壮性也降低了。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号