首页> 外文期刊>IEEE Transactions on Computers >A Mobile Data Gathering Framework for Wireless Rechargeable Sensor Networks with Vehicle Movement Costs and Capacity Constraints
【24h】

A Mobile Data Gathering Framework for Wireless Rechargeable Sensor Networks with Vehicle Movement Costs and Capacity Constraints

机译:具有车辆移动成本和容量约束的无线可充电传感器网络的移动数据收集框架

获取原文
获取原文并翻译 | 示例

摘要

Several recent works have studied mobile vehicle scheduling to recharge sensor nodes via wireless energy transfer technologies. Unfortunately, most of them overlooked important factors of the vehicles’ moving energy consumption and limited recharging capacity, which may lead to problematic schedules or even stranded vehicles. In this paper, we consider the recharge scheduling problem under such important constraints. To balance energy consumption and latency, we employ one dedicated data gathering vehicle and multiple charging vehicles. We first organize sensors into clusters for easy data collection, and obtain theoretical bounds on latency. Then we establish a mathematical model for the relationship between energy consumption and replenishment, and obtain the minimum number of charging vehicles needed. We formulate the scheduling into a Profitable Traveling Salesmen Problem that maximizes profit - the amount of replenished energy less the cost of vehicle movements, and prove it is NP-hard. We devise and compare two algorithms: a greedy one that maximizes the profit at each step; an adaptive one that partitions the network and forms Capacitated Minimum Spanning Trees per partition. Through extensive evaluations, we find that the adaptive algorithm can keep the number of nonfunctional nodes at zero. It also reduces transient energy depletion by 30-50 percent and saves 10-20 percent energy. Comparisons with other common data gathering methods show that we can save 30 percent energy and reduce latency by two orders of magnitude.
机译:最近的几项研究已经研究了移动车辆调度,以通过无线能量传输技术为传感器节点充电。不幸的是,大多数人忽视了影响车辆行驶能耗和限制充电能力的重要因素,这可能导致日程安排出现问题,甚至导致车辆滞留。在本文中,我们考虑了在这种重要约束下的充电调度问题。为了平衡能耗和等待时间,我们使用了一辆专用的数据收集车和多辆充电车。我们首先将传感器组织到群集中,以方便数据收集,并获得延迟的理论界限。然后,我们建立了能量消耗与补给之间关系的数学模型,并获得了所需的最少充电车数。我们将日程安排化为可获利的旅行商问题,该问题使利润最大化-补充的能量数量减去车辆的行驶成本,并证明这是NP问题。我们设计并比较了两种算法:一种贪婪的算法,它使每一步的利润最大化;一种自适应网络,用于对网络进行分区并在每个分区上形成容量最小生成树。通过广泛的评估,我们发现自适应算法可以将非功能节点的数量保持为零。它还可将瞬态能量消耗减少30-50%,并节省10-20%的能量。与其他常见数据收集方法的比较表明,我们可以节省30%的能量,并将延迟减少两个数量级。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号