首页> 外文期刊>Microprocessors and microsystems >A novel discrete particle swarm optimization algorithm for meta-task assignment in heterogeneous computing systems
【24h】

A novel discrete particle swarm optimization algorithm for meta-task assignment in heterogeneous computing systems

机译:异构计算系统中用于元任务分配的新型离散粒子群优化算法

获取原文
获取原文并翻译 | 示例

摘要

Optimal assignment of a meta-task in heterogeneous computing systems is NP-complete in the general case. Therefore, heuristic approaches must be employed to find good solutions within a reasonable time. We propose a novel discrete particle swarm optimization (DPSO) algorithm for this problem. Firstly, to make particle swarm optimization algorithm more suitable for solving task assignment problems, particles are represented as integer vectors and a new position update method is developed based on discrete domain. Secondly, an effective variable neighborhood descent algorithm is applied to emphasize exploitation. In addition, migration mechanism is introduced with the hope to escape from possible local optimum and to balance the exploration and exploitation. Computational simulations and comparisons based on a set of benchmark instances indicate that the proposed DPSO algorithm is a viable approach for the task assignment problem.
机译:一般情况下,异构计算系统中元任务的最佳分配是NP完全的。因此,必须采用启发式方法在合理的时间内找到好的解决方案。针对这一问题,我们提出了一种新颖的离散粒子群优化算法。首先,为了使粒子群优化算法更适合于解决任务分配问题,将粒子表示为整数向量,并基于离散域开发了一种新的位置更新方法。其次,采用有效的变量邻域下降算法来强调利用。另外,引入了迁移机制,希望摆脱可能的局部最优并平衡勘探和开发。基于一组基准实例的计算仿真和比较表明,所提出的DPSO算法是解决任务分配问题的可行方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号