首页> 外文期刊>Neurocomputing >A hybrid particle swarm optimization algorithm for load balancing of MDS on heterogeneous computing systems
【24h】

A hybrid particle swarm optimization algorithm for load balancing of MDS on heterogeneous computing systems

机译:异构计算系统上MDS负载均衡的混合粒子群优化算法

获取原文
获取原文并翻译 | 示例

摘要

An efficient hybrid genetic algorithm and particle swarm optimization algorithm (HGAPSO) is studied in this work for load balancing of molecular dynamics simulations (MDS) on heterogeneous supercomputers by combining the genetic algorithm (GA) and the particle swarm optimization (PSO) algorithm. A hybrid CPU-GPU platform is applied to enabling large-scale MDS that emulates the metal solidification. Applied to task scheduling of the parallel algorithm, the approach obtains excellent results. The experimental results show that the proposed algorithm can improve the efficiency of parallel computing and the precision of physical simulation. (C) 2018 Elsevier B.V. All rights reserved.
机译:在这项工作中,通过结合遗传算法(GA)和粒子群优化(PSO)算法,研究了一种高效的混合遗传算法和粒子群优化算法(HGAPSO),用于异构超级计算机上的分子动力学模拟(MDS)的负载平衡。混合CPU-GPU平台用于实现模拟金属凝固的大规模MDS。该方法应用于并行算法的任务调度,取得了很好的效果。实验结果表明,该算法可以提高并行计算的效率和物理仿真的精度。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号