首页> 外文期刊>Computer networks >A hybrid of firefly and improved particle swarm optimization algorithms for load balancing in cloud environments: Performance evaluation
【24h】

A hybrid of firefly and improved particle swarm optimization algorithms for load balancing in cloud environments: Performance evaluation

机译:萤火虫和改进的粒子群优化算法的混合体,用于云环境中的负载平衡:性能评估

获取原文
获取原文并翻译 | 示例

摘要

Cloud environments have been defined in order to provide the effective services and have different advantages but there are encounters some challenges such as load balancing. This paper presents a hybrid of firefly and Improved Particle Swarm Optimization (IPSO) algorithms in order to reach the better average load for making and improving the important metrics such as effective resource utilization and the response time of tasks respectively. This research has been provided some indicators for evaluating the performance of proposed hybrid method too. The results presented the better performance other than similar methods as well as flexible behavior in average load minimization through multi objectives optimization. (C) 2019 Elsevier B.V. All rights reserved.
机译:定义了云环境以提供有效的服务并具有不同的优势,但是会遇到诸如负载平衡之类的挑战。本文提出了萤火虫和改进粒子群算法(IPSO)的混合算法,以达到更好的平均负载,以制定和改进重要指标,例如有效资源利用和任务响应时间。该研究也为评价所提出的混合方法的性能提供了一些指标。结果显示出比类似方法更好的性能,以及通过多目标优化使平均负载最小化的灵活行为。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号