首页> 外文期刊>Journal of Parallel and Distributed Computing >Hybridization of firefly and Improved Multi-Objective Particle Swarm Optimization algorithm for energy efficient load balancing in Cloud Computing environments
【24h】

Hybridization of firefly and Improved Multi-Objective Particle Swarm Optimization algorithm for energy efficient load balancing in Cloud Computing environments

机译:萤火虫及改进的多目标粒子群优化算法杂交,以云计算环境中节能负载平衡

获取原文
获取原文并翻译 | 示例

摘要

Load balancing, in Cloud Computing (CC) environment, is defined as the method of splitting workloads and computing properties. It enables the enterprises to manage workload demands or application demands by distributing the resources among computers, networks or servers. In this research article, a new load balancing algorithm is proposed as a hybrid of firefly and Improved Multi-Objective Particle Swarm Optimization (IMPSO) technique, abbreviated as FIMPSO. This technique deploys Firefly (FF) algorithm to minimize the search space where as the IMPSO technique is implemented to identify the enhanced response. The IMPSO algorithm works by selecting the global best (gbest) particle with a small distance of point to a line. With the application of minimum distance from a point to a line, the gbest particle candidates could be elected. The proposed FIMPSO algorithm achieved effective average load for making and enhanced the essential measures like proper resource usage and response time of the tasks. The simulation outcome showed that the proposed FIMPSO model exhibited an effective performance when compared with other methods. From the simulation outcome, it is understood that the FIMPSO algorithm yielded an effective result with the least average response time of 13.58ms, maximum CPU utilization of 98%, memory utilization of 93%, reliability of 67% and throughput of 72% along with a make span of 148, which was superior to all the other compared methods.
机译:负载平衡,在云计算(CC)环境中,被定义为拆分工作负载和计算属性的方法。它使企业能够通过在计算机,网络或服务器之间分发资源来管理工作负载需求或应用需求。在本研究文章中,提出了一种新的负载平衡算法作为萤火虫的混合和改进的多目标粒子群优化(IMPSO)技术,缩写为FIMPSO。该技术部署了Firefly(FF)算法,以最小化搜索空间,因为实现了IMPSO技术以识别增强响应。 IMPSO算法通过选择具有小距离到一行的全局最佳(GBest)粒子的作用。随着从点到线的最小距离的施加,可以选择GBEST粒子候选者。所提出的FIMPSO算法实现了有效的平均负载,用于制作和增强的基本措施,如适当的资源使用和任务的响应时间。仿真结果表明,与其他方法相比,所提出的FIMPSO模型表现出有效的性能。从模拟结果来看,据了解,FIMPSO算法产生了具有13.58ms的最低平均响应时间的有效结果,最大CPU利用率为98%,内存利用率为93%,可靠性为67%,吞吐量为72%跨度为148,其优于所有其他比较方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号