首页> 外文期刊>Microfluidics and nanofluidics >Application of reconfigurable pinhole mask with excimer laser to fabricate microfluidic components
【24h】

Application of reconfigurable pinhole mask with excimer laser to fabricate microfluidic components

机译:准分子激光可重构针孔掩模在微流控元件制造中的应用

获取原文
获取原文并翻译 | 示例
       

摘要

An excimer laser incorporating a reconfigurable intelligent pinhole mask (IPM) is demonstrated for the fabrication of microfluidic geometries on a poly(methyl methacrylate) substrate. Beam reconfiguration techniques are used to overcome some of the drawbacks associated with traditional scanning laser ablation through a static mask. The production of zero lead-in (ZLI) features are described, where the ramp lead-in angle-inherent to scanning laser ablation-is reduced to be in line with the cross-sectional side-wall angle of the microchannel itself. The technique is applied to eliminate under-cutting and ramping at channel junctions—features resulting from scanning ablation through a fixed mask—and produce flat crossing sections, junctions and inlets. The development of a prediction model for microchannel visualisation and refinement prior to the fabrication step is also described. The model includes variables from the IPM, laser, scanning stage and material etch rate allowing quantitative measurement of generated microchannel geometry. One application of the model is the development of microchannel mixing geometry which is analysed using computational fluid dynamic (CFD) techniques. For this purpose, the effect of varying the overall channel geometry on mixing within a microchannel was investigated for flows with low Reynolds numbers. The resulting geometry is found to reduce the distance required for mixing by 50% in comparison to a straight planar channel, thereby enabling smaller device geometries.
机译:结合了可重构智能针孔掩模(IPM)的准分子激光器被证明可在聚甲基丙烯酸甲酯基板上制造微流体几何结构。光束重新配置技术用于克服与传统扫描激光通过静态掩模烧蚀相关的一些缺陷。描述了零导入(ZLI)特征的产生,其中将与扫描激光烧蚀相关的倾斜导入角减小为与微通道本身的横截面侧壁角一致。该技术用于消除通道接合处的欠切和倾斜(通过固定掩模扫描消融而产生的特征),并产生平坦的横截面,接合处和入口。还描述了在制造步骤之前用于微通道可视化和优化的预测模型的开发。该模型包括来自IPM,激光,扫描台和材料蚀刻速率的变量,可以对生成的微通道几何形状进行定量测量。该模型的一种应用是开发微通道混合几何结构,可以使用计算流体动力学(CFD)技术对其进行分析。为此,针对低雷诺数的流动,研究了改变整体通道几何形状对微通道内混合的影响。发现所形成的几何形状与直的平面通道相比将混合所需的距离减少了50%,从而实现了更小的设备几何形状。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号