首页> 外文期刊>Microelectronics reliability >Maximum error modeling for fault-tolerant computation using maximum a posteriori (MAP) hypothesis
【24h】

Maximum error modeling for fault-tolerant computation using maximum a posteriori (MAP) hypothesis

机译:使用最大后验(MAP)假设进行容错计算的最大错误建模

获取原文
获取原文并翻译 | 示例

摘要

The application of current generation computing machines in safety-centric applications like implantable biomedical chips and automobile safety has immensely increased the need for reviewing the worst-case error behavior of computing devices for fault-tolerant computation. In this work, we propose an exact probabilistic error model that can compute the maximum error over all possible input space in a circuit-specific manner and can handle various types of structural dependencies in the circuit. We also provide the worst-case input vector, which has the highest probability to generate an erroneous output, for any given logic circuit. We also present a study of circuit-specific error bounds for fault-tolerant computation in heterogeneous circuits using the maximum error computed for each circuit. We model the error estimation problem as a maximum a posteriori (MAP) estimate [28,29], over the joint error probability function of the entire circuit, calculated efficiently through an intelligent search of the entire input space using probabilistic traversal of a binary Join tree using Shenoy-Shafer algorithm [20,21 ]. We demonstrate this model using MCNC and ISCAS benchmark circuits and validate it using an equivalent HSpice model. Both results yield the same worst-case input vectors and the highest percentage difference of our error model over HSpice is just 1.23%. We observe that the maximum error probabilities are significantly larger than the average error probabilities, and provides a much tighter error bounds for fault-tolerant computation. We also find that the error estimates depend on the specific circuit structure and the maximum error probabilities are sensitive to the individual gate failure probabilities.
机译:当前的计算机在以安全性为中心的应用(如可植入生物医学芯片和汽车安全性)中的应用极大地增加了对用于容错计算的计算设备的最坏情况错误行为进行审查的需求。在这项工作中,我们提出了一个精确的概率误差模型,该模型可以以电路特定的方式计算所有可能输入空间上的最大误差,并且可以处理电路中各种类型的结构相关性。对于任何给定的逻辑电路,我们还提供最坏情况的输入向量,该向量最有可能产生错误的输出。我们还介绍了使用针对每个电路计算的最大误差,对异构电路中的容错计算进行特定于电路的误差范围的研究。我们将误差估计问题建模为整个电路的联合误差概率函数的最大后验(MAP)估计[28,29],该函数通过使用二元Join的概率遍历对整个输入空间进行智能搜索来有效地计算得出使用Shenoy-Shafer算法[20,21]。我们使用MCNC和ISCAS基准电路演示了该模型,并使用等效的HSpice模型对其进行了验证。两种结果都产生相同的最坏情况输入向量,并且我们的误差模型与HSpice的最大百分比差异仅为1.23%。我们观察到最大错误概率明显大于平均错误概率,并且为容错计算提供了更紧密的错误范围。我们还发现误差估计取决于特定的电路结构,并且最大误差概率对各个门的故障概率很敏感。

著录项

  • 来源
    《Microelectronics reliability》 |2011年第2期|p.485-501|共17页
  • 作者单位

    Nano Computing Research Group (NCRG), Department of Electrical Engineering, University of South Florida, Tampa, Florida, USA;

    EverSpin Technologies, Austin, Texas, USA;

    Nano Computing Research Group (NCRG), Department of Electrical Engineering, University of South Florida, Tampa, Florida, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号