首页> 外文期刊>Journal of Computational Neuroscience >Efficient computation of the maximum a posteriori path and parameter estimation in integrate-and-fire and more general state-space models
【24h】

Efficient computation of the maximum a posteriori path and parameter estimation in integrate-and-fire and more general state-space models

机译:在集成射击和更一般的状态空间模型中高效计算最大后验路径和参数估计

获取原文
获取原文并翻译 | 示例

摘要

A number of important data analysis problems in neuroscience can be solved using state-space models. In this article, we describe fast methods for computing the exact maximum a posteriori (MAP) path of the hidden state variable in these models, given spike train observations. If the state transition density is log-concave and the observation model satisfies certain standard assumptions, then the optimization problem is strictly concave and can be solved rapidly with Newton-Raphson methods, because the Hessian of the loglikeli-hood is block tridiagonal. We can further exploit this block-tridiagonal structure to develop efficient parameter estimation methods for these models. We describe applications of this approach to neural decoding problems, with a focus on the classic integrate-and-fire model as a key example.
机译:使用状态空间模型可以解决神经科学中的许多重要数据分析问题。在本文中,我们描述了在给定尖峰火车观测值的情况下,用于计算这些模型中隐藏状态变量的确切最大后验(MAP)路径的快速方法。如果状态转移密度是对数凹的,并且观测模型满足某些标准假设,则优化问题严格是凹的,并且可以使用牛顿-拉夫森方法快速解决,因为对数似然的黑森州是块三对角的。我们可以进一步利用这种块三对角结构为这些模型开发有效的参数估计方法。我们以经典的集成解雇模型为例,介绍了这种方法在神经解码问题上的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号