机译:基于改进的PSO-SVR模型的锂离子电池健康状况评估的可靠预测
Beihang Univ, Sch Reliabil & Syst Engn, Beijing 100191, Peoples R China;
Beihang Univ, Sch Reliabil & Syst Engn, Beijing 100191, Peoples R China|Sci & Technol Reliabil & Environm Engn Lab, Beijing 100191, Peoples R China;
Beihang Univ, Sch Reliabil & Syst Engn, Beijing 100191, Peoples R China|Sci & Technol Reliabil & Environm Engn Lab, Beijing 100191, Peoples R China;
Lithium-ion battery; Prognostic; State of health; Support vector regression; Particle swarm optimization;
机译:基于高斯过程模型和粒子滤波的锂离子电池健康状态预测新方法
机译:基于库仑效率的锂离子电池预测和健康评估模型
机译:基于休息时间的再生现象对锂离子电池健康状态估计的预后框架
机译:基于间接健康指标和高斯过程回归模型的锂离子电池健康状况
机译:基于改进的戴维南电路模型的神经网络锂离子电池充电状态估计
机译:基于恒定电压充电曲线的锂离子电池剩余容量估算
机译:基于休息时间的再生现象对锂离子电池健康状态估计的预后框架