首页> 外文期刊>Microelectronics & Reliability >Robust prognostics for state of health estimation of lithium-ion batteries based on an improved PSO-SVR model
【24h】

Robust prognostics for state of health estimation of lithium-ion batteries based on an improved PSO-SVR model

机译:基于改进的PSO-SVR模型的锂离子电池健康状况评估的可靠预测

获取原文
获取原文并翻译 | 示例

摘要

State of health (SOH) estimation of lithium-ion batteries is significant for safe and lifetime-optimized operation. In this study, support vector regression (SVR) is employed in battery SOH prognostics, and particle swarm optimization (PSO) is employed in obtaining the SVR kernel parameter. Through a new validation method, the proposed PSO-SVR model in this paper can well grasp the global degradation trend of-SOH and is little affected by local regeneration and fluctuations. The case study shows that compared with the eight published methods, the proposed model can obtain more accurate SOH prediction results. Even SOH prediction starts from the cycle near capacity regeneration, the proposed model still can grasp the global degradation trend. Furthermore, the improved PSO-SVR model has great robustness when the training data contain noise and measurement outliers, which makes it possible to get satisfactory prediction performance without pre-processing the data manually. (C) 2015 Elsevier Ltd. All rights reserved.
机译:锂离子电池的健康状态(SOH)估算对于安全且寿命优化的操作非常重要。在这项研究中,支持向量回归(SVR)用于电池SOH的预测中,而粒子群优化(PSO)用于获取SVR内核参数。通过一种新的验证方法,本文提出的PSO-SVR模型可以很好地掌握-SOH的整体降解趋势,几乎不受局部再生和波动的影响。案例研究表明,与八种已公开方法相比,该模型可以获得更准确的SOH预测结果。即使SOH预测是从接近容量再生的周期开始的,所提出的模型仍然可以掌握全局退化趋势。此外,当训练数据包含噪声和测量离群值时,改进的PSO-SVR模型具有强大的鲁棒性,这使得无需手动预处理数据即可获得令人满意的预测性能。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号