...
首页> 外文期刊>Microelectronic Engineering >Deep plasma etching of Parylene C patterns for biomedical applications
【24h】

Deep plasma etching of Parylene C patterns for biomedical applications

机译:用于生物医学应用的聚对二甲苯C模式的深等离子体蚀刻

获取原文
获取原文并翻译 | 示例

摘要

We report on the plasma etching of thick (similar to 23 mu m) Parylene C structures. Parylene C is a transparent polymer that benefits from high biocompatibility, flexibility and chemical inertness, and has gained increased attention over the years in the biomedical field. In the manufacturing process, highly defined structuration steps of Parylene C are essential, but techniques based on laser, scalpel and wet etching have shown to be unsuitable for properly cut structures. Plasma etching remains nowadays the most widespread option, though fast etching rate, lack of residues and high aspect ratios are still hard to achieve. To overcome these issues, the selection of both mask material and plasma conditions is crucial. Here, three masks - metal, positive and negative photoresists - are tested as stencils, and several plasma parameters are briefly studied in order to obtain the highest etching rate while maintaining good coverage. We showed that increasing the RF power up to a considerable 2800 W while maintaining a moderate physical contribution (bias power, pressure, temperature), is optimal in the achievement of fast PaC etching without inducing thermal stress. Besides, the addition of a short fluorinated plasma in the midst of the process is shown to alleviate residues. For the first time, negative photoresist Intervia Bump Plating (BPN) coating followed by ICP1 -RIE2 are used in order to pattern Parylene C-based structures, with a clean cut, vertical profile and fast etching rate (similar to 0.87 +/- 0.06 mu m/min) and a selectivity of 0.5. This solution was carried out to release unitary Parylene-based neural probes from a silicon wafer. Finally, cytotoxicity assays on these neural implants were performed to make sure that no trace of mask or stripper residues jeopardizes device biocompatibility. (C) 2017 Elsevier B.V. All rights reserved.
机译:我们报道了厚(约23微米)聚对二甲苯C结构的等离子蚀刻。聚对二甲苯C是一种透明的聚合物,得益于高的生物相容性,柔韧性和化学惰性,多年来在生物医学领域引起了越来越多的关注。在制造过程中,高度精确的聚对二甲苯C结构化步骤是必不可少的,但是基于激光,手术刀和湿法蚀刻的技术已显示出不适用于正确切割的结构。如今,等离子刻蚀仍然是最广泛的选择,尽管仍然难以实现快速刻蚀速度,缺少残留物和高纵横比的优点。为了克服这些问题,掩模材料和等离子体条件的选择至关重要。在这里,将三个掩模(金属,正性和负性光致抗蚀剂)作为模板进行测试,并简要研究了几个等离子体参数,以便在保持良好覆盖率的同时获得最高蚀刻速率。我们表明,将RF功率提高到相当大的2800 W,同时保持适度的物理影响(偏置功率,压力,温度),对于实现快速PaC蚀刻而不产生热应力是最佳的。此外,在该过程的中间添加短氟化等离子体可减轻残留物。首次使用负光刻胶Intervia凹凸电镀(BPN)涂层,然后使用ICP1-RIE2,以对基于聚对二甲苯C的结构进行构图,具有整齐的切割,垂直轮廓和快速蚀刻速率(类似于0.87 +/- 0.06 (μm/ min)和0.5的选择性。进行该溶液以从硅晶片释放单一的基于聚对二甲苯的神经探针。最后,对这些神经植入物进行细胞毒性测定,以确保没有痕量的掩膜或剥离剂残留物危害装置的生物相容性。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号