首页> 外文期刊>IEEE / ASME Transactions on Mechatronics >Inverse Rate-Dependent Prandtl–Ishlinskii Model for Feedforward Compensation of Hysteresis in a Piezomicropositioning Actuator
【24h】

Inverse Rate-Dependent Prandtl–Ishlinskii Model for Feedforward Compensation of Hysteresis in a Piezomicropositioning Actuator

机译:压电微定位致动器中滞回的前馈补偿的与速率无关的Prandtl–Ishlinskii模型

获取原文
获取原文并翻译 | 示例

摘要

Piezomicropositioning actuators, which are widely used in micropositioning applications, exhibit strong rate-dependent hysteresis nonlinearities that affect the accuracy of these micropositioning systems when used in open-loop control systems, and may also even lead to system instability of closed-loop control systems. Feedback control techniques could compensate for the rate-dependent hysteresis in piezomicropositioning actuators. However, accurate sensors over a wide range of excitation frequencies and the feedback control techniques inserted in the closed-loop control systems may limit the use of the piezomicropositioning and nanopositioning systems in different micropositioning and nanopositioning applications. We show that open-loop control techniques, also called feedforward techniques, can compensate for rate-dependent hysteresis nonlinearities over different excitation frequencies. An inverse rate-dependent Prandtl–Ishlinskii model is utilized for feedforward compensation of the rate-dependent hysteresis nonlinearities in a piezomicropositioning stage. The exact inversion of the rate-dependent model holds under the condition that the distances between the thresholds do not decrease in time. The inverse of the rate-dependent model is applied as a feedforward compensator to compensate for the rate-dependent hysteresis nonlinearities of a piezomicropositioning actuator at a range of different excitation frequencies between 0.05–100 Hz. The results show that the inverse compensator suppresses the rate-dependent hysteresis nonlinearities, and the maximum positioning error in the output displacement at different excitation frequencies.
机译:在微定位应用中广泛使用的压电微定位致动器在开环控制系统中使用时表现出很强的速率依赖性磁滞非线性,这些非线性会影响这些微定位系统的精度,甚至可能导致闭环控制系统的系统不稳定。反馈控制技术可以补偿压电微定位执行器中与速率有关的磁滞。但是,在广泛的激励频率范围内使用精确的传感器以及在闭环控制系统中插入的反馈控制技术可能会限制在不同的微定位和纳米定位应用中使用压电微定位和纳米定位系统。我们表明,开环控制技术(也称为前馈技术)可以补偿不同激励频率下与速率相关的磁滞非线性。逆速率相关的Prandtl–Ishlinskii模型用于在压电微定位阶段对速率相关的滞后非线性进行前馈补偿。在阈值之间的距离不随时间减小的情况下,速率依赖模型的精确反演成立。速率相关模型的逆函数用作前馈补偿器,以补偿在0.05–100 Hz之间的不同激励频率范围内压电微定位致动器的速率相关磁滞非线性。结果表明,逆补偿器抑制了速率相关的磁滞非线性,以及在不同激励频率下输出位移的最大定位误差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号